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Abstract

The medial axis can be viewed as a compact represen-
tation for an arbitrary model; it is an essential ge-
ometric structure in many applications. A number
of practical algorithms for its computation have been
aimed at speeding up its computation and at address-
ing its instabilities. In this paper we propose a new
algorithm to compute the medial axis with arbitrary
precision. It exhibits several desirable properties not
previously combined in a practical and efficient algo-
rithm. First, it allows for a trade-off between com-
putation time and accuracy, making it well-suited for
applications in which an approximation of the medial
axis suffices, but computational efficiency is of partic-
ular concern. Second, it is output sensitive: the com-
putation complexity of the algorithm does not depend
on the size of the representation of a model, but on
the size of the representation of the resulting medial
axis. Third, the densities of the approximated medial
axis points in different areas are adaptive to local free
space volumes, based on the assumption that a coarser
approximation in wide open area can still suffice the re-
quirements of the applications. We present theoretical
results, bounding the error introduced by the approxi-
mation process. The algorithm has been implemented
and experimental results are presented that illustrate
its computational efficiency and robustness.

1 Introduction

The medial axis of a solid D is the locus of points in-
side D, which lie at the centers of all non-intersecting
closed discs or balls in D of maximum radius that have
at least two contact points with D [5, 28]. Given a me-
dial axis of D and its associated radius function, it is
easy to reconstruct the surface of D. Thus the medial
axis provides a compact representation of D. The me-
dial axis is helpful in many applications, such as shape

analysis [24, 36], robot motion planning [13, 18], image
processing [22], computer vision [7, 23], solid modeling
[14, 17, 31] and mesh generation [1, 27]. In this paper
we present a novel approach to compute an approxi-
mated medial axis based on aforementioned definition.
While various algorithms to compute the exact me-

dial axis of simple polyhedra composed of a few hun-
dreds of triangles exist [21, 26, 28], it is non-trivial
to scale them to more complicated models. This is a
consequence of the instability and the algebraic com-
plexity of the medial axis as a mathematical structure.
A small change of the surface can cause relatively large
changes in the medial axis; furthermore, the algebraic
representation of the medial axis usually is of higher
degree than the surface of the solid. In order to ad-
dress the instability problem and reduce the computa-
tion time, algorithms to approximate the medial axis
have been proposed. These will be discussed in detail
in Section 2.
There are a number of applications for which com-

putation time is of critical concern, but an exact repre-
sentation of the medial axis is not needed. For exam-
ple, robotic motion planning techniques based on the
medial axis have been devised [13, 18]. These methods
exploit the fact that the medial axis captures points
at a maximal distance from obstacles and use it as a
heuristic to find positions of the robot that do not col-
lide with the environment [18]. For this application an
approximated medial axis, which can be computed ef-
ficiently, is very desirable. Furthermore, in narrow and
geometrically complex regions, a more detailed repre-
sentation of the medial axis is of interest, whereas in
wide open regions the danger of collision is low and a
coarse representation suffices.
In this paper, we propose a novel algorithm to ap-

proximate the medial axis. Motivated by applications
such as robot motion planning, the proposed algorithm
has the following characteristics:

1. The computation of the approximated medial axis



can be performed very efficiently. As shown in
Section 7, the approximated medial axis of the
model of the Stanford Bunny with 69,451 triangles
can be computed in only 5.6 seconds on a stan-
dard PC. The approximated medial axis of the
Happy Buddha model, consisting of over one mil-
lion triangles, can be computed in 13.4 seconds.
This is much faster than existing algorithms with
the same input.

2. The algorithm allows the user to trade off speed
of computation for accuracy: the more accurate
the approximation, the more computation time is
required.

3. The algorithm adapts the density of points used
to represent the approximated medial axis based
on local properties of the solid. Few points are
necessary in open areas and a denser set of points
is used to represent the approximated medial axis
in confined areas.

As a consequence, the proposed approach is well suited
for application in which an efficiently computed, ap-
proximated medial axis is of value. This has been vali-
dated experimentally in the domain of sampling-based
motion planning in robotics [34].

2 Related Work

Given the geometric description of a solid, there are
various algorithms to compute its medial axis. We
classify the approaches found in the literature based
on their method of exploring the interior of the solid.
The algorithms in the first category use a tracing

approach [21, 26, 28] to compute the medial axis. The
algorithm starts from a junction point, which is the
point where multiple facets of the medial axis inter-
sect, and traces the seams from the junction point un-
til they meet another junction point or an end point.
This procedure is repeated recursively until all parts of
the medial axis have been traced. In addition, Culver
[9] also uses a spatial subdivision technique to reduce
the running time of the algorithm. Choset [8] applies
this approach to sensor-based motion planning. His
algorithm only uses local distance information gained
from the sensors to incrementally build a medial axis
representation, as the robot explores its environment.
The tracing steps are small and computation speed
is limited. Holleman [18] uses a similar approach to
determine the medial axis, which is then used as a
heuristic for sampling free configuration space in the
probabilistic roadmap approach to robot motion plan-
ning. Computational considerations limit the applica-

bility of these approaches to polyhedra composed of
only a few thousand faces.
The algorithms in the second category represent the

free space as voxels. Lam [19] gives a survey of thin-
ning algorithms based on voxel representations and
Zhang [35] provides a performance evaluation. The
thinning algorithms perform erosion in order to com-
pute an approximated medial axis. Siddiqi [29] as-
signs each voxel a vector field value corresponding to
the vector pointing to the closest point on the sur-
face. A voxel is considered to be on the medial axis
if the mean flux of the vector field entering the neigh-
bor voxels is positive. Ragnemalm [25] assigns to each
voxel the Euclidean distance to its nearest voxel on the
boundary and computes the local directional maxima
to determine the approximated medial axis, while Hoff
[16] utilizes hardware to compute these, thus speeding
up the computation. Vleugels [33] divides voxels re-
cursively if they contain a portion of the medial axis
until they reach a minimum size. Foskey [11] com-
bines the advantages of [16] and [33], using hardware
to compute distances while adaptively and recursively
dividing the voxels. This method computes a simpli-
fied medial axis [11], which is a subset of the actual
medial axis. This new data structure is more stable
but it does not necessarily maintain the connectivity
of the medial axis, thereby limiting its applicability.
The algorithms in the third category divide the free

space into Voronoi regions based on sample points on
the surface of the solid. The resulting Voronoi regions
are tiny because a dense sampling of the surface is re-
quired for an accurate computation of the medial axis.
Both [3] and [10] provide good surveys of the literature
of the algorithms in this category. These algorithms
are applicable to complicated models, if an appropriate
set of sample points can easily be determined.

3 Sampling the Approximated

Medial Axis

The main idea of our algorithm is to efficiently gen-
erate a small set of partially overlapping maximal
spheres to cover almost the entire free space within
the solid. These spheres are constructed to intersect
features of the medial axis. By sampling points on
the surface of the spheres and determining their clos-
est feature in the environment, a set of points on the
surface of the sphere that are in proximity to the me-
dial axis can be identified. The points serve as an
approximation to the medial axis. The union of these
points comprises the approximated medial axis, abbre-
viated as aMA in the remainder of the paper. Because
large open areas can be covered by large spheres, the



aMA consists of few points in wide open areas and is
denser in geometrically complex regions of the solid.
The precision with which the aMA approximates the
medial axis can be specified as a parameter of the algo-
rithm. This allows users to consciously trade accuracy
for computational efficiency.

3.1 Description of the Algorithm

Each point inside the solid has at least one closest
feature on the surface of the solid. The direction vector

~v of a point p in the solid D is the unit vector pointing
from point p to the closest feature on the surface of D.
The distance δ(p) associated with a point p in the solid
D is the distance from point p to the closest feature
on the surface of D. Note that points on the medial
axis must have at least two direction vectors.

The description of the algorithm relies on two prim-
itive operations. The first identifies an initial point m
and associated distance δ(m), such that the resulting
sphere of radius δ(m) around m intersects the medial
axis. The second primitive, given a solid D, a set of
points P in the interior of D and their direction vec-
tors, for each point p ∈ P identifies that point on the
medial axis ofD which is closest to p. These primitives
will be described after we have detailed the algorithm
of computing the aMA.

Assume point m lies on the medial axis and is dis-
tance δ(m) away from the closest obstacle. This point
is determined using aforementioned primitive. A pri-
ority queue Q is initialized to contain the sphere de-
scribed by point m and radius δ(m). The set S of
spheres describing the free space inside the solid D is
initialized to be the empty set.

The largest sphere s is extracted from Q and a set
U of uniformly distributed samples is generated on its
surface. Points in U that are contained in one of the
spheres in S are discarded. The second aforementioned
primitive is used to determine those points in U that lie
closest to the medial axis. These points pi are added
into the aMA and, along with their distances δ(pi),
into the priority queue Q. The sphere s is added to S.
To bound the exploration of free space we introduce an
additional requirement for insertion into Q: only those
spheres with radii larger than the expansion threshold

Ke can be added. We can control computation time
and the number of aMA points by changing Ke. These
steps are repeated until Q is empty (see also Figure 1).

Figure 2 illustrates our method in a two-
dimensional case. Assume o1 is the first element in
Q. A maximal circle centered at o1 is generated and
n samples p1, p2, ..., pn are generated on its circumfer-
ence (not all samples are shown in the figure). The
point pairs (p1, p2), (p3, p4) and (p5, p6) have different

1. Find point m inside D such that δ(m) > Ke

and the medial axis intersects the sphere of ra-
dius δ(m) around m (see Section 3.2).

2. Sphere set S := ∅

3. Medial axis point set M := ∅

4. Priority queue Q := {(m, δ(m))}

5. While Q is not empty

(a) Extract sphere s = (p, δ(p)) from Q

(b) Generate n uniformly distributed samples
U = {u1, · · · , un} on the surface of s. Dis-
card all ui ∈ U for which ∃sj ∈ S such that
ui ∈ sj .

(c) Using U and the direction vectors associated
with the ui ∈ U , determine approximated
medial axis points A = {a1, · · · , ak} (see Sec-
tion 3.3).

(d) Q := Q∪{(ai, δ(ai)) |ai ∈ A and δ(ai) > Ke}

(e) M :=M ∪A

(f) S := S ∪ {(p, δ(p))}

6. Connect points in M to generate the aMA (see
Section 5)

Figure 1: The pseudo code of the algorithm. S is
the set of spheres describing the interior of the solid
D. M is the set of points describing the approximated
medial axis. Q is the priority queue of spheres, ordered
by radius.



direction vectors and the midpoints of these pairs, q1,
q2 and q3, are considered to be on the medial axis;
they are added to the aMA and to the queue. Since
q3 has the largest radius it is expanded next and the
procedure repeats.

p1

p2

p3
p4

p5

p6 o1

q1

q2

q3

Figure 2: An illustration of the algorithm. The dashed
lines represent the medial axis of the rectangle.

We now discuss the two primitives used in the de-
scription of the algorithm.

3.2 Identifying the Initial Approxi-

mated Medial Axis Point

In the description of the algorithm it was assumed that
the queue Q is initialized with a point m on the me-
dial axis of the solid D. We use a similar expansion
algorithm as the one described above to find m. Start-
ing from a random point p inside D, we generate the
maximal sphere with the center at p. If we cannot
find a medial axis point of the surface of the sphere
(how medial axis points are identified is described in
Section 3.3), we take the point p′ with the biggest ra-
dius as the center of the next sphere. This process
is repeated until the sphere of radius δ(p′) around p′

intersects the medial axis. Since this procedure con-
verges towards a sphere of locally maximum radius,
its center converges towards a point p′ on the medial
axis and the surrounding sphere thus must intersect
the medial axis.

3.3 Identifying Approximated Medial

Axis Points

Given a set of uniformly distributed sample points U
on the surface of a sphere, we apply the separation

angle criteria [3, 4, 6, 11] to determine the set con-
taining points of the aMA. If the direction vectors of
two adjacent sample points span an angle larger than
a threshold θt, we take the samples’ midpoint as the
aMA points. In Section 4 we will bound the error of
this approximation.

The separation angle criteria can erroneously place
a point on the medial axis (see Figure 3 for an example)
[11]. If a reflex vertex on the boundary is the nearest
neighbor to both sample points, both direction vectors
will point toward that vertex. To identify these cases,
we apply the divergence criteria: the direction vectors
must point away from each other.

p2p1

v2v1

Figure 3: False positives for the separation angle cri-
teria

If a sphere only intersects one facet of the aMA,
there will be two sets of sample points, each set with a
different direction vector, based on classification by the
angle criteria. In this case we simply insert the cen-
ter of the sphere into the aMA. The samples on the
surface are superfluous. If a sphere intersects multiple
facets of the medial axis, however, we identify adjacent
samples with three or more distinct direction vectors
and add their midpoint to the aMA. These points are
called critical points; they designate an edge or a ver-
tex between multiple facets of the aMA. Critical points
can be used to approximate the hierarchical general-
ized Voronoi graph[8].

3.4 Increasing the Accuracy of the Ap-

proximation

Our basic algorithm does not sample the interior of
the spheres. By restricting sampling to the surface of
the sphere, important features of the aMA might be
missed. We provide an optional refinement algorithm
which can locate aMA points with a maximal number
of adjacent aMA facets on the inside of a sphere. Start-
ing from one aMA point, we use a tracing algorithm
similar to the one proposed in [18] to look for a point
where several aMA facets touch. Our method differs
from [18] in that it performs the tracing in 3D, rather
than in a plane. The method uniformly samples n
points nearby and selects the point with equal or more
adjacent aMA facets as the next tracing point. The re-
finement algorithm stops if the tracing point is outside
of the sphere or all points nearby have less MA facets
crossing. If the refinement point is close to another
critical point, we discard it and stop the algorithm.
The aMA points found in this manner more accurately
describe the characteristics of the solid. This refine-
ment considerably increases the computation time of
the overall algorithm.



3.5 Discussion

In Section 2, we differentiated three categories of ap-
proaches to medial axis computation. These meth-
ods were classified according to their methods of free
space exploration. All of them generate the (approx-
imated) medial axis either during or after the explo-
ration process. The algorithm proposed here can also
be regarded as a tracing approach: it traces the me-
dial axis by sampling on the spheres during expansion.
However, the algorithm differs importantly from previ-
ous approaches: during the tracing progress, the step
size is adjusted based on the local geometrical prop-
erties of the free space. By construction, the centers
of the spheres lie close to the medial axis and thus
free space is explored with near-optimal step sizes. To
ensure this property all possible tracing directions are
explored at every step. The near-optimal step size is
the main reason for the computational efficiency of the
proposed approach.

4 Approximation Error

In this section we bound the error made by the pro-
posed method of approximating the medial axis of a
solid. We differentiate quantitative errors that result
from the finite sampling density of our algorithm, and
qualitative errors. The latter are a consequence of the
sphere expansion algorithm to explore the free space
inside the solid.
When considering the quantitative error, two cases

have to be distinguished. If the sampling density on
the surface is kept constant, larger spheres will be
covered by a larger number of samples than smaller
spheres. In this case we compute the absolute error as
the distance of a point on the aMA to the closest point
on the true medial axis. If the number of samples is
kept constant, on the other hand, the sampling den-
sity is lower on large spheres, which means that fewer
samples are computed in wide open areas. In other
words, the computational expense is proportional to
the difficulty of the region – a desirable property for
an approximation algorithm. For this case we will con-
sider a relative error, which relates the absolute error
to the amount of local free space.

4.1 Sample Point Accuracy

Let M be the set of approximated medial axis points
for a given solid D attained by our algorithm. For
each point pi in M , there exists a medial axis point ti
which is closest to pi. The absolute and relative errors
for the sample points M of the approximated medial
axis, relative to the true medial axis T are

• Absolute error εa: maxpi∈M{|pi − ti|}

• Relative error εr:
εa

δ(ti)

Given a set of uniform samples on a unit sphere (cir-
cle), we define two points as neighbors of each other if
the distance between them is smaller than the neighbor

threshold dn. If the closest features of two neighboring
points p1 and p2 are different, there is a point between
them which is closest to both of those features and
thus lies on the medial axis. We will consider the mid-
point m of the line segment between p1 and p2 as a
point on the approximated medial axis. Consequently,
the maximum distance between points of the approxi-
mated medial axis and the real medial axis is given by
εa =

dn

2 . This equation holds in both 2D for circles
and 3D for spheres. The resolution of the algorithm is
then defined by rmin

dn

2 , where rmin is the radius of the
smallest sphere generated by the algorithm described
in Section 3.
It is obvious that there is a relation between the

number of the samples placed on a sphere and the qual-
ity of the approximated medial axis. In the following
sections we establish how many samples are needed in
order to achieve a desired absolute or relative error in
2D or 3D.

4.1.1 2D

It is relatively easy to compute the number N of sam-
ples needed for a given absolute error εa. During the
exploration of free space, the algorithm uniformly sam-
ples N points on a circle (refer to Figure 2). The angle
∆θ between two neighbor sample points (for example,
6 −−→q1p1

−−→q1p2) is
2π
N
and the distance between them is

given by

|−−→p1p2| = 2r sin
∆θ

2
= 2r sin

π

N
.

Let dn equal |−−→p1p2|. The absolute error is then given
by:

εa =
dn

2
= r sin

π

N
.

Consequently, given an absolute error εa the number
of samples needed is given as a function of the radius
r of the sphere:

N =
π

arcsin εa

r

(1)

To determine the relative error εr, we have to esti-
mate the radius of a nearby pointm on the true medial
axis. In Figure 2, assume the closest MA point to q1
is m. The r in equation 1 is the distance δ(q1) and not
δ(m). Although m and δ(m) are unknown, according



to the definition of the medial axis and the triangle
inequality, we can estimate δ(q1) ≤ δ(m) < δ(q1) + εa
under the condition thatm has the same direction vec-
tors as q1. Thus

εa

δ(q1)+εa

< εa

δ(m) ≤
εa

δ(q1)
. If r ≤ δ(q1),

εa

δ(m) ≤
εa

δ(q1)
≤ εa

r
, we can select N based on εa

r
:

N =
π

arcsin εr

Should r ≥ δ(q1), we determine N based on the fol-
lowing equation:

N =
π

arcsin εrr
δ(q1)

Given the number N of desired sample points pi
and the origin o of a sphere with radius r, it is easy to
determine their position:

pi = o+ r

(

cos 2πi
N

sin 2πi
N

)

for i = 1, · · · , N.

4.1.2 3D

Before we discuss the accuracy of the algorithm ap-
plied to a three-dimensional solid, we introduce the
sphere covering problem [15, 30]: How can n points be
placed on a unit sphere so as to minimize the maxi-
mum distance of any point on the sphere to the other
n − 1 points? Alternatively, the problem can be de-
fined in terms of covering the unit sphere with spheri-
cal caps [2, 32]. We rely on approaches presented in the
literature to determine a uniformly spaced sampling
pattern on spheres during the free space exploration
phase of the algorithm.
Determining the approximated medial axis point

based on two adjacent sample points on a sphere with
radius r, the absolute error is given by εa = r dn

2 . If
more than two samples with different direction vectors
are used to determine a point the aMA, the triangle
inequality is used to bound the error by εa < r dn.
Given a desired maximum absolute error, it is easy to
determine the maximum allowed distance d between
samples. Using the methods for uniform sampling on
the unit sphere referenced above, we determine the
number of samplesN and their locations on the sphere.
The relative error for the three-dimensional case

is determined in a similar fashion as in the two-
dimensional case.

4.2 Missing Features of the Medial

Axis

The aMA points we obtain only represent a subset
of the simplified medial axis [11]. The proposed algo-
rithm misses part of the simplified medial axis because

it does not expand spheres into the entire free space
and because it only considers a small set of points on
the surfaces of spheres.

Given an absolute error εa, the algorithm will stop
if the maximum δ(p) of all sample points p is smaller
than εa. For a relative error εr, the algorithm will ter-
minate if the radius of all spheres is smaller than the
threshold Ke. Obviously, the algorithm can not reach
a space with a ’gate’ smaller than εa or the thresh-
old Ke. The spheres stop spreading when they meet
that ’gate’ and the free space behind the gate will be
missed, including the associated features of the medial
axis.

In the case of relative error, the sample points on
large spheres are sparser and thus have larger distance
d. Consequently, using relative error, the size of the
largest gate which is missed depends on the amount
of local free space. This is illustrated in Figure 4:
p1 and p2 are adjacent sample points on the bigger
circle and θb is the angle between the direction vec-
tors of p1 and p2; q1 and q2 are the adjacent sample
points on the smaller circle and θs is the angle between
the direction vectors of q1 and q2. It is obvious that
|p1p2| > |q1q2| and θb < θs. According to the sepa-
ration angle criteria, the algorithm can find the aMA
point on the smaller circle but not on the bigger circle,
if θb < θt < θs.

Figure 4: The algorithm might miss more features
when it uses the relative error criterion.

5 Generating the Approximated

Medial Axis

So far we have obtained a set of aMA points by sam-
pling on spheres during the exploration process. For
some applications it might suffice to have sampled
points on the aMA; other applications might rely on
knowing the actual facets of the aMA.We now describe
how the adjacency relationship between the sampled
aMA points discovered during the free space explo-



ration is exploited to compute facets of the medial axis.

For a two-dimensional solid the medial axis is com-
posed of one-dimensional curves. We connect the aMA
points by straight lines based on the parent-child rela-
tionship obtained during exploration: if an aMA point
is on the surface of a sphere centered at another aMA
point, we connect these two aMA points. We know
from the algorithm that all aMA points, except for
the first one, are the centers of the maximal spheres
and on the surfaces of other spheres. So the segments
connecting them are completely inside the spheres and
far away from the boundary of the model. If the end
points of the aMA segments have different direction
vectors, we can explore the bisectors of the aMA seg-
ments to locate more aMA points in order to refine
the approximated medial axis. We can then connect
adjacent children to form facets.

For a three-dimensional solid the medial axis con-
sists of facets of dimension two and below. We use the
algorithm presented in [18] to determine the faces of
the aMA. In relatively simple models, big MA facets
may exist that are covered by more than one sphere.
We collect aMA points on the same MA facets based
on their direction vectors and positions. In order to
achieve better approximation and to improve the vi-
sual effect, we use the refinement algorithm described
in Section 3.4 to find additional aMA points inside the
spheres. The refinement algorithm uses a basic trac-
ing method. Performing this optimization will increase
the computation significantly.

6 Computational Complexity

There are two factors determining the computational
complexity of the proposed algorithm. The most costly
operation performed is the distance computation (see
also Section 7). The complexity of the model critically
impacts the computational complexity of this opera-
tion, which generally is assumed to be O(log n) in prac-
tice, where n is the number of faces of the model. In
other words, the computational cost of performing a
distance computation is determined by the size of the
input.

To the extent that the presented algorithm has to
input the description of the environment and performs
distance computations on this description, its compu-
tational cost is dependent on the input size. If we ig-
nore this for a moment, however, and regard distance
computation as a constant time operation, we note
that the algorithm is output-sensitive, i.e., its compu-
tational cost only depends on the size of the output.
For every sample point generated on the aMA we can
bound the required computation time by a constant.

This is a very desirable property, in particular for an
algorithm that trades accuracy for efficiency. This
property shows that the computational cost is related
to the geometric complexity of the solid itself and not
its model. In other words, assuming a cube as the solid
and still regarding the cost of distance computation as
constant, the proposed algorithm would produce the
same aMA with the identical number of distance com-
putations and thus with the same computational cost,
irrespective of whether the cube is represented by 12
triangles or by 12 million triangles. To achieve this re-
sult we do not have to take the model into account by
specifying a desired step size or resolution, we simply
specify the desired relative error.

While output sensitivity is a very desirable prop-
erty for an algorithm of this kind, the dependency on
the geometric complexity, rather than on some com-
binatorial property based on the number of vertices,
makes it impossible to classify the proposed method
according to well-known complexity classes.

7 Experimental Results

The experiments reported here were performed on a
dual-PentiumIII PC with 1024 MB SRAM and a 32MB
DDR NVIDIA GeForce2 GTS graphics card. The al-
gorithm was implemented in C++, with Open Inven-
tor as the graphics API. Distance computation was
performed using the PQP package [12, 20]. Several
models were used, ranging in complexity from 12 to
1,087,718 triangles. Table 1 summarizes the experi-
mental results.

Figure 5 and 6 are the medial axis of the simple
models which have relative big facets. In the image
different colors represent different aMA facets. Where
more than two aMA facets intersect in a line segment,
inaccuracies as a result of fixed-resolution sampling
can be observed. The facets of the approximated me-
dial axis also do not reach into ’corners’ of the space.
This is due to the fact that free space exploration only
continues as long as spheres have a certain minimum
size.

Figure 7 to Figure 10 show more complex models
and their approximated medial axes. Our algorithm
uses relatively few spheres Ns to cover the free space
inside the models and attains a small set of aMA points
(|M | = Np). While our method only computes an ap-
proximated medial axis, it is significantly faster than
previous methods with the same input. For example,
at a low resolution the aMA points of the Stanford
Bunny, the horse model, and the Happy Buddha can
be computed in only 5.61, 12.3 and 13.4 seconds, re-
spectively. Even at higher resolution (see Table 1) the



Figure 5: The medial axis of a box (Box 1, 12 tri-
angles). It takes 3.94 seconds to compute the medial
axis. Different colors represent different aMA facets.

Figure 6: The medial axis of a simple model (Box 2,
20 triangles). It takes 4.53 seconds to compute the
medial axis. Different colors represent different aMA
facets.

computational cost is significantly lower than previous
methods, as known to the authors.

As we described in Section 4, the algorithm may
miss some parts of the medial axis when computing its
approximation. In order to demonstrate this effect vi-
sually, we used spheres with small fixed radius to com-
pute the medial axis of the models; this corresponds
to an implementation of a tracing approach. Figure 8
and Figure 9 compare the resulting medial axis with
the approximated medial axis computed by the pro-
posed method. It can be seen that most features of
the medial axis are preserved. For volumes that are
nearly spherical, such as the body of the Stanford
Bunny, and are thus captured by a large sphere, some
parts of the medial axis are lost. As demonstrated
by the aMA in the legs of the horse model, geomet-
rically tight or complex spaces are approximated very
well. This comparison visually confirms that the pro-
posed method computes the aMA accurately in tight
and complex environments, and determines a coarser
approximation in areas that are wide open.

Figure 7: The approximated medial axis of a flange
mount (1,684 triangles) was computed in 3.45 seconds.
The approximated medial axis is shown in gray. The
surface of the flange mount is shown as a wire frame
model.

The results shown in Table 1 as well as the results
shown in Table 2 illustrate how the algorithm allows
to trade efficiency for accuracy.

8 Conclusion

A novel approach to computing an approximated me-
dial axis of a solid was presented. It distinguishes itself
from previous approaches in the following respects:



Model ∆s Nsp Resolution Ns Np ND T (seconds)

Box1 12 132 0.005646 134 147 7,575 1.56

0.002824 350 363 18,598 3.94

Box2 20 132 0.005646 146 169 8,300 1.84

0.002824 382 405 20,335 4.53

Flange 1,684 132 0.012 92 172 7,212 3.45

Mount 0.006 642 902 63,863 45.5

Stanford 69,451 132 0.00668 91 143 6,564 5.61

Bunny 0.0033 357 685 20,248 17.64

Horse 96,966 132 0.0028 306 400 21,738 13.3

0.006 124 223 3,960 13.4

Buddha 1,087,718 72 0.0031 889 1187 29,328 48.8

0.00156 3116 3627 101,918 174.4

Table 1: This table shows experimental results for a variety of models. The aMA was computed for a separation
angle of π

3 . ∆s is the number of the triangles of the model; Nsp is the number of samples on each sphere.
Resolution refers to the maximum distance between neighboring points on the smallest sphere generated during
the computation of the aMA ( dn

2 ), assuming the model is scaled to fit into a unit cube. The variable Ns designates
the number of spheres generated during free space exploration, Np refers to the number of points used to represent
the aMA, ND indicates the number of distance computations performed during the expansion, and T represents
the computation time of the aMA.

Error criterion Nsp Resolution T

Relative 132 0.0033 17.64
Relative 72 0.0046 3.343
Absolute N/A 0.0089 5.156
Absolute N/A 0.0093 3.531

Table 2: Computation time for different absolute and
relative errors for the Stanford Bunny. During free
space exploration, Nsp samples were generated on each
shpere, determining the resolution of the algorithm;
the overall computation time T for the aMA compu-
tation is given in seconds.

1. It computes an approximated medial axis using
adaptive step sizes, resulting in unprecedented
computational efficiency.

2. It permits the user to make an explicit trade-off
between speed of computation and accuracy by
specifying an acceptable relative or absolute error.

3. The algorithm is output sensitive. In other words,
the computational cost is not determined by the
complexity of the model (considering distance
computation a constant time operation for a given
model), but rather by the geometric complexity of
the solid.

4. The computational effort expended by the algo-
rithm in a particular local region of the solid is

proportional to its local geometric complexity.

The algorithm is motivated by the fact that the me-
dial axis of a solid D[5, 28] is the locus of points inside
D, which lie at the centers of all closed discs or balls
which are maximal in D and have at least two con-
tact points with D. It proceeds by computing these
maximal spheres inside D and using their radii as a
step sizes. Experimental results demonstrate that the
proposed method allows for the efficient computation
of an approximated medial axis, which (based on vi-
sual inspection) preserves the most important features
of the true medial axis, while being computationally
much more efficient. The algorithm has successfully
been applied to a number of benchmark models, con-
sisting of up to one million triangles.
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Figure 8: The Stanford Bunny (top, 69,451 triangles),
its approximated medial axis (middle, computed in
17.64 seconds) and the medial axis computed by ex-
pansion of spheres with fixed radii (bottom, computed
in 888.6 seconds).

Figure 9: The horse model (top, 96,966 triangles), its
approximated medial axis (middle, computed in 13.3
seconds) and the medial axis computed by expansion
of spheres with fixed radii (bottom, computed in 221.3
seconds).



Figure 10: The Happy Buddha model (top, 1,087,718
triangles) and its approximated medial axis (bottom,
computed in 174.4 seconds).
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