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Abstract— Efficient motion planning for robots with many
degrees of freedom requires the exploration of a large con-
figuration space. Sampling based motion planners perform
approximate exploration of the configuration space in order
to render the problem tractable. Each sample of configuration
space as an opportunity to gain information about that config-
uration space. A formal definition of information gain can be
used to guide a motion planner to achieve maximal progress
toward the discovery of a path. We call such a motion planner
entropy-guided since entropy reduction is synonymous with
information gain. In the following we describe a single-query
entropy-guided motion planner which uses a formal definition
of information gain to focus its efforts on the acquisition of a
single path from start to goal locations. Experimental evidence
indicates that this approach can outperform existing single-
query techniques.

I. INTRODUCTION

Motion planning for robots with more than a few degrees
of freedom is a challenging problem. In large part, this is
because the size of the configuration space for such a robot
is exponential in the degrees of freedom that the robot
possesses. Even the general task of motion planning has
been shown to be PSPACE complete [10] and complete
exploration of a configuration space for a robot with
more than a few degrees of freedom is computationally
impractical. In the face of these exponential bounds, a
planner must limit its exploration to relevant regions of the
configuration space. Computation should not be expended
on regions that provide little benefit to the motion planner.

Sampling-based motion planners reduce complexity by
constructing an approximate model of the configuration
space to plan with. Every sample taken results in the
acquisition of information about the configuration space.
Since each examination of a configuration provides in-
formation, and the examinations themselves are the pri-
mary computational expense incurred by a sampling based
motion planner, it is preferable to select configurations
which maximize the gain in information about the motion
planner’s task. Entropy-Guided motion-planning [4] uses a
formal definition of information gain to guide exploration
of configuration space for multi-query motion planning. In
the following we describe a single-query entropy-guided
motion planner.

Single-query motion planners limit exploration of the
configuration space by focusing on a single path between

a specified pair of configurations. Areas of configuration
space that don’t contribute to the discovery of this path
are irrelevant to the planner. In our terms they offer no
information to be gained. Existing single-query approaches
approximate the relevance of a region of configuration
space using a simple proximity heuristic. Regions that are
closer to the start and goal points of the path query are
judged to offer more information about the query than more
distant configurations. Distant regions are only explored if
a path through nearby regions proves to be impossible.

In contrast to proximity, the entropy-guided approach
uses a formal definition of information gain to guide the
motion planner’s exploration. To do this, we first define
a distribution that has high entropy when we have no
information about the single-query and low entropy when
we have found a path from start to goal. Sampling and
exploration used by the motion planner is designed to
maximize the expected reduction in the entropy, or infor-
mation gain, of the distribution as a result of the knowledge
obtained by the examination. By doing this, the planner is
assured that given the current information available to it
about configuration space, each action that it takes results in
maximal progress toward discovering the path that has been
queried. The entropy-guided planner chooses explorations
that result in greater information gain and progress toward
a solution, as a result we show an implementation of
single-query entropy-guided motion planning outperforms
existing single-query approaches.

II. RELATED WORK

The first probabilistic approach to single-query path
planning was the LazyPRM algorithm [2]. LazyPRM sam-
ples initially into the configuration space without perform-
ing any collision checks. Samples are assumed to be free
and are connected to their nearest neighbors by edges
without verifying their validity. LazyPRM searches using
the A* algorithm which biases search toward the region of
space surrounding straight line paths between the start and
goal state. When a candidate path in the roadmap is found,
it is validated by testing all nodes and then all edges. If
obstructed nodes or edges are found, they are removed from
the graph and A* path search begins again. A multi-grid
variant of LazyPRM [1] discretizes the range of motion
for each degree of freedom to simplify the configuration



space. The granularity of the discretization is adapted until
the motion planner can find a path.

Fuzzy PRM [9] developed simultaneously with
LazyPRM and shares many of its characteristics. Unlike
LazyPRM, Fuzzy PRM does not delay the examination
of nodes in its graph, but does delay evaluation of edges.
Fuzzy PRM maintains an estimated probability value for
each edge based on a distribution over the unchecked
portion of the edge. Candidate paths through configuration
space were found using Dijkstra’s algorithm with the
obstructed probability of the edge as the edge weight.
When a path is found, it is verified by examining edges in
the order from longest (judge by FuzzyPRM to be least
probable) to shortest (most probable).

Similar to the grid extensions of LazyPRM is the single-
query quasi-random grid approach (LazyQRM) [7]. Quasi-
random grids establish a lattice of configurations spanning
the configuration space. Since the structure of the grid
is implicitly defined, the costly pre-sampling and graph
construction required by LazyPRM is not required. The A*
algorithm using Euclidean distance to goal as its heuristic
is used for search within the grid. The complexity of the
A* algorithm is determined by the branching factor of each
node in the search tree. For LazyQRM this value is given by
the dimension of the configuration space and consequently
the complexity of LazyQRM grows exponentially in the
degrees of freedom.

An adaptive approach to single-query path planning is
presented in [12]. It featured a meta-planner incrementally
trying to plan between start and goal. At each planning
attempt the “best” algorithm, based upon the number
of obstructed configurations and the algorithm’s previous
performance, is selected and attempts a plan between the
trees growing from the start and goal. When planning fails,
any progress made by the planner is grafted onto the start
and goal tree.

Rapidly-growing random trees (RRTs) [6] quickly ex-
plore the area between start and goal configurations by
diffusing random trees of short edges through configuration
space. Single-query planning with expansive spaces [5] also
uses diffusion from start and goal configurations to find a
path.

Others have suggested the use of information theory
for motion planning. Yu and Gupta [13] use reduction in
entropy to guide exploration. In their case, the entropy is
of the model of the physical workspace and information is
gained by sensing the real world, whereas we are interested
in the entropy of the model of configuration space and gain
information by sampling configuration space.

The notions of entropy and information gain have been
used [3] to successfully guide sampling in the construction
of multi-query probabilistic roadmaps. In this paper we use
related techniques to minimize the number of configuration
space examinations necessary for the construction of a fea-
sible path between specified start and goal configurations.

III. ENTROPY-GUIDED SINGLE-QUERY MOTION

PLANNING

To efficiently plan given the general computational com-
plexity of motion planning, a motion planner must only
explore a region of configuration space in proportion to the
underlying importance of that region. To determine which
areas of configuration space are most relevant or important,
the motion planner needs information about the specific
problem instance it is planning for. This information about
the configuration space is used to determine which regions
are most important to explore. Traditional single-query ap-
proaches to motion planning focus on configuration space
regions near to start and goal configurations or along the
shortest path connecting the configurations. This proximity
heuristic gives the planner a definition for the relevance
used to guide the motion planner.

In contrast, entropy-guided methods for motion plan-
ning [3] are inspired by the observation that each examina-
tion of configuration space obtains information about the
motion planner’s task. Each examination of configuration
space should maximize the expected gain in information
that results. In contrast to the entropy-guided approach to
multi-query motion planning, single-query entropy-guided
motion planning attempts to maximize information gain
concerning the particular path we are searching for. An
additional contribution of the single-query entropy-guided
approach is that all explorations are also incorporated into
an approximate model of configuration space. This model
generalizes information from individual examinations and
can be used to obtain predictions about the state of unob-
served configurations.

In the following we discuss this approach in detail. First
we give a formal definition of information gain for the
single-query motion problem. Next we show how this can
be used to guide exploration of configuration space in a
concrete implementation. This implementation requires the
development of a memory-based approximate model of
configuration space.

A. Information gain for single-query planning

Information gain [11] is a formal representation of the
reduction in uncertainty that results from some additional
knowledge. It was originally proposed to formally model
information transfer through electronic signals. In the case
of sampling-based motion planning, additional knowledge
is the observation that a configuration is obstructed or free.
Previously, we defined information gain for multi-query
motion planning [3]. For single-query motion planning
we must define expected information gain for the task of
discovering a particular path.

Entropy is the measure of uncertainty of a probability
distribution � over a domain �:
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Information gain is the reduction in the entropy of a
distribution as a result of obtaining some information �:
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A distribution that has low entropy when a path between
start and goal has been found allows information gain
to be used to direct exploration. At each step of the
motion planner, taking steps that maximize information
gain (and thus minimize entropy) of this distribution results
in maximal progress toward a solution to the specified path
query.

For single-query motion planning we use a distribution
over a set of possible paths � in a roadmap �. Each
member of this set 	 � � represents a path connecting
the start and goal configurations. The probability assigned
to each path 	 in this distribution is the probability that it
will be the successful path returned by the motion planner.
This probability is the combination of the probability that
the path is free (�� �	�) and the probability that this path
will be examined by the motion planner prior to any other
path which is free (���	�). Since these probabilities are
independent, the joint probability that the path is free and
examined prior to any other free path is given by:

���	� � ���	�� �� �	�

The probability, ���	� is difficult to calculate exactly but
it is proportional to the length of the path since the planner
uses A* which searches for shortest paths.
�� �	� can be calculated as the product of the probability

that it’s constituent vertices 
 �	� and edges ��	� are free:
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Edge and vertex probabilities are either the result of direct
observation in the collision checker or estimated by the
approximate model (Section IV-A).

The entropy of this distribution is given by:
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Every exploration of configuration space results in ob-
taining of some new information � which pertains to the
feasibility of the path 	.

For each path 	 in �, there are two possible outcomes
of learning �: 	 may be more likely to be free, or 	

may now be known to be obstructed. In each case, the
information gain is given by the difference between the
prior and current entropy. Most of the probabilities for the
paths of the distribution will remain the same, only those
paths that contain a vertex or edge related to � will be
affected. Let �� be this set of all paths in � that contain
paths affected by � .

First, consider the case where � results from an observa-
tion that something is free. In this case, the probability of
each path that � pertains to increases slightly:
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When � results from an obstructed observation path 	 �
�� that � pertains to, the probability of the path becomes
zero. The information gained is:
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Expected information gain is given by:

� ������� � � �
�
��
�

���	� ������	� �

� �� � free�
�
��
�

���	��� ������	���

Observing that ������	��� � � and that ���	��� � � for
any path 	, we can see that for information pertaining to a
set of paths ��, the information gain from discovering an
obstruction is greater than or equal to information gain for
observing free space. Intuitively this can be seen by noting
that observing a configuration is obstructed immediately
eliminates the entire path, while observing a configuration
is free only increases the probability the path is free.

The following section describes how this information
theoretic analysis of single-query motion planning can be
used to develop an single-query entropy-guided motion
planner.

IV. A SINGLE-QUERY ENTROPY-GUIDED PLANNER

The formal definition of information gain previously
presented leads to the development a single-query entropy-
guided motion planner. The exact computation of informa-
tion gain is not feasible to compute for a number of reasons,
including the difficulty of assessing ���	� the probability of
a candidate path 	 being selected prior to any free path and
the computational expense of calculating the set �� of paths
whose probability is influenced by knowing �. Despite this,
the formal definition of information gain for single-query
motion planning can be used to guide the operation of a
single-query motion planner. At each stage of the motion
planner’s operation, intuitions from the information gain
calculation can be used to shape the planner’s behavior.

At the initial stage of motion planning, the single-query
entropy-guided motion planner chooses an initial set of



samples from which an initial roadmap and approximate
model of configuration space are constructed. A fraction
of the samples are chosen uniformly at random, while the
majority are chosen from the hyper-cube bounding box
surrounding the start and goal configurations. To build
the model, all sampled configurations are inspected by
the collision checker to determine if they are free or
obstructed. Details of the model are given later (Section
IV-A). The initial roadmap is constructed from configura-
tions which are found to be free, but without verifying
the connecting edges. This is one important difference
between the entropy-guided approach and LazyPRM [2]
which constructs an initial roadmap without examining any
configurations. Another important distinction is that while
LazyPRM samples quite heavily and uses short edges to
connect configurations, we sample sparsely and connect
using longer edges.

Once the initial roadmap has been constructed, A* is
used to find a candidate path between start and goal
configurations. In contrast to previous uses of A* for path
planning [1], [2] that use edge length for edge cost, the cost
used by entropy-guided planning is the product of edge
length and the probability the edge is obstructed:

Cost�� � � � Length��� �� ��

The probability that an edge is obstructed is estimated
by the approximate model. This cost is designed to favor
edges that are likely to be free, while simultaneously
maintaining a focus on the goal node. The constant � is
used to balance this trade-off. A*’s heuristic � remains
the Euclidean distance to the goal node, this also ensures
that search is directed toward the goal configuration. This
cost heuristically attempts to maximize ���	� and �� �	�
which in turn maximizes the information gain resulting
from either validating or eliminating the path 	. ���	� is
maximized because the path is short it is likely to be chosen
by A*. �� �	� is maximized because paths which are likely
to be free are favored.

Once a candidate path is found, the algorithm begins by
examining each of its vertices. The expected information
gain from examining a vertex is greater than for examining
an edge since the set of paths �� affected by gaining
information about a vertex is greater than the set of paths
affected by gaining information about an edge. Because
observing an obstructed vertex provides more information
than observing a free vertex, the vertices are examined
in order according to their probability of obstruction. If
any vertex is obstructed, examination of the candidate
path stops and search for a new candidate path resumes.
This scheme for examining paths is unlike the LazyPRM
approach which proceeds from start and goal nodes toward
the middle of the path.

Once all vertices in the candidate path are verified, the
edges of the candidate path are examined. Again the edges
are examined in order by their probability of obstruction. If

an edge is found to be obstructed it is removed and search
for a new candidate path resumes. If all edges are found
to be free, the path is the solution.

If a candidate path between start and goal cannot be
found in the graph, it is necessary to enhance the roadmap
to introduce new candidate paths. The resampling that
we use is similar to that of LazyPRM, we resample
configurations that are near to obstructed edges that connect
valid configurations in the roadmap. Unlike LazyPRM,
we filter the configurations that we resample through the
approximate model of configuration space. If a resampled
configuration is likely to be obstructed, we do not add it
into the roadmap. The planner learns from experience and
avoids pathologically resampling the same invalid regions
of configuration space. Once resampling is performed, the
search for a candidate path continues using the augmented
roadmap.

Throughout all of the operations of the single-query
entropy-guided planner it is necessary to be able to quickly
obtain estimates of a configuration or edge’s state without
the computational expense of examining it in a collision
checker. To accomplish this we build an approximate
memory-based model of the pertinent configuration space
using the information acquired by the planner so far.

A. Models

Although previous single-query work can be seen to have
built implicit models of configuration space, the use of
expected information gain requires a more sophisticated
model. In particular it depends on predictions of the state
of unobserved configurations. The approximate model also
incorporates information that existing single-query methods
discard. In particular it retains information from obstructed
samples in order to predict that nearby configurations are
likely obstructed as well.

Modeling configuration space can be viewed as a classi-
cal machine learning classification problem [8]. An approx-
imate model is constructed from a training set of configura-
tions which have been examined in a collision checker and
observed to be free or obstructed. The approximate model
uses these observed configurations to approximate the state
of unobserved query configurations.

For our approximate model we use a nearest neigh-
bor model [8]. The nearest neighbor model is a local,
memory-based approximate model. It estimates the state
of an unobserved configuration by examining the set of
� nearest neighbors in the model. The state (observed
or free) with the greatest number of nearby neighbors is
take as the state of the unobserved configuration. We have
shown elsewhere [4], that approximate models can build
successful approximations of configuration space.

Nearest neighbor models have a number of appealing
characteristics for our purposes. First, adding data to the
model takes constant time regardless of the size of the
model. Also, querying the model is linear in the number of



Fig. 1. The initial (transparent) and final (solid) configuration of a twelve
degree of freedom arm in the experimental environment.

configurations used to construct it. Additionally, the model
does not attempt to model the entire configuration space.
Since we only add configurations that are relevant to the
single-query, only a model of the regions related to the
particular path is built. Finally, since nearest neighbors is a
local model, it easily adapts to intricate local configuration
space topologies such as narrow passages and peaks.

V. EXPERIMENTS

To validate the entropy-guided approach to single-query
motion planning we perform experiments with the imple-
mentation of a single-query entropy-guided planner de-
scribed previously (Section IV). The performance of the
entropy-guided planner is compared to the performance
of traditional LazyPRM [1] and the single-query quasi-
random planner (LazyQRM) [7]. Initial parameters for
these two algorithms are set based upon descriptions in
the respective papers.

To compare the algorithms we measure the number
individual calls to the collision checker, the number of calls
to validate an edge and the total overall time to find a path.
For the entropy-guided planner, the number of collision
checks used to construct the initial roadmap and model is
included in the total number of collision checks.

Experiments were run for an arm with six, nine and
twelve degrees of freedom. The twelve degree of freedom
arm is shown in Figure 1. The six degree of freedom
arm consisted of three links connected by joints with
two degrees of freedom. The nine degree of freedom arm
used the same three links but joints with three degrees of
freedom. The twelve degree of freedom arm added a fourth
link and joint with three degrees of freedom to the nine
degree of freedom arm. The workspace for all of the arms
is the same and is shown in Figure 1. Each algorithm runs
ten times with ten different path queries. Each path query
consisted of a random starting location in the vicinity of
the straight configuration shown in Figure 1 and a goal
configuration with the end effector inside the constrained
location in workspace (also pictured in Figure 1). In this
way, none of the paths queried were trivially easy for the

motion planner to solve. All of the path queries represented
the most challenging trajectory in the workspace.

The results of the experiments are shown in Figure 2.
It can be seen that entropy-guided single-query planning
outperforms the other two planners. The LazyQRM planner
fails to complete for either the nine or twelve DOF worlds.
It consumes all available memory and exits on a Pentium
4, 3.2Ghz with 1 gigabyte of RAM. This is indicative of
the fact that LazyQRM’s grid grows exponentially in the
dimensionality of the configuration space.

It is important to note that in the twelve degree of
freedom world neither the LazyPRM nor the entropy-
guided approach could reliably find a path. The LazyPRM
planner successfully found a path 50% of the time and the
entropy-guided planner found a path 75% of the time. In
these successful attempts, LazyPRM outperforms entropy-
guided, but it is successful less often. These results are
summarized in Table I. When LazyPRM is successful,
it is because it has selected beneficial placements for its
initial roadmap. Thus, its performance is biased by optimal
placements. Entropy-Guided motion planning is less reliant
on receiving a good initial roadmap and can find solutions
more often. However, some of the solutions take more
effort to discover. We intend to explore extensions to
the entropy-guided approach, including the use of better
approximate models, and resampling techniques to address
this issue.

For the purposes of practical motion planning we apply a
time cut-off to each algorithm. Any path planning attempt
that lasted longer than thirty seconds is halted and path
planning restarts from the beginning. The collision and
edge checks as well as the runtime are all accumulated
until a successful motion plan occurs. The graphs in Figure
2 show these results. The graphs indicate that the entropy-
guided approach leads to better runtimes for all three
problems. The greater number of collision checks in six
and nine degrees of freedom are from the checks used
to build the initial roadmap and model. This constant
cost is subsumed by motion planning collision checks
for the twelve degree of freedom arm. It is important to
note that individual collision checks require an order of
magnitude less computation than edge checks, so the slight
differences in the number of collision checks has much
less of an effect on runtime than the number of edge
checks. Additionally single-query entropy-guided motion
planning is biased toward checking edges which are likely
to be obstructed, while LazyPRM is biased toward edges
likely to be free. Obstructed edges are generally less
computationally difficult to check than free edges, resulting
in further performance gains.

VI. CONCLUSIONS

Motion planning for robots with many degrees of free-
dom is a problem with proven complexity. To practically
plan despite these general bounds on performance an



Algorithm Success Collision Edge Runtime
Checks Checks

Entropy Guided 75% 2433.1 26.1 5.9
LazyPRM 50% 1575.5 19.25 5.0
LazyQRM 0% N/A N/A N/A

TABLE I

PERCENTAGE OF SUCCESSFUL MOTION PLANS FOR THE 12-DOF
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Fig. 2. Experimental results for motion planning in 6, 9 and 12 degree
configuration spaces

efficient motion planner must maximally exploit available
information about a particular problem instance to adapt
computation toward the solution to this particular problem.

Each examination of configuration space obtains infor-
mation pertinent to the discovery of a path. Entropy-Guided
motion planning is a sampling-based approach to motion
planning in which every configuration sampled by the
planner is chosen to provide the maximal expected gain in
information related to the task of the motion planner. In the
preceding we have described an entropy-guided approach
to sampling-based single-query motion planning which

maximizes the information gain concerning a particular
path through configuration space. We have given a formal
definition of information gain for the single-query problem
and shown how this definition can be used to develop a
single-query entropy-guided motion planner.

We have also demonstrated the use of an approximate
model of configuration space which allows the motion plan-
ner to acquire more information about configuration space
from each observed sample of configuration space. This
model is more sophisticated than a traditional roadmap. It
can provide estimates of the state of configurations that
have not been observed, based upon input from nearby
configurations. Each examination of configuration space
refines the prediction of expected information gain and
suggests new configurations to examine next. An impor-
tant distinction of this planner in comparison to existing
approaches is that it introspects its progress while motion
planning and uses this information to guide future explo-
ration.

Experimental results with an implementation of this
single-query entropy-guided motion planner show that it
is capable of outperforming existing approaches to single-
query motion planning.
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