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Abstract

This paper proposes a methodology for learning joint proba-
bility estimates regarding the effect of sensorimotor features
on the predicated quality of desired behavior. These relation-
ships can then be used to choose actions that will most likely
produce success. relational dependency networks are used to
learn statistical models of procedural task knowledge. An ex-
ample task expert for picking up objects is learned through
actual experience with a humanoid robot. We believe that
this approach is widely applicable and has great potential to
allow a robot to autonomously determine which features in
the world are salient and should be used to recommend pol-
icy for action.
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1. Introduction
Generalized task knowledge can be decomposed into declar-
ative and procedural components (Mandler 2004). The
declarative structure captures abstract knowledge about the
task; e.g., to pick up an object, we must first find the object,
reach to it, and then grasp it. The procedural structure cap-
tures knowledge about how to instantiate the abstract policy
in a particular setting; e.g., we must use our left hand to
pick up the object and use an enveloping grasp. With such
a decomposition, it is possible to represent task knowledge
in a general, robust, and fault-tolerant way. The declara-
tive structure of a task defines an abstract schema that can
guide an agent’s behavior in the world, while the procedu-
ral substrate decorates this abstract schema with resources
based on environmental context. This paper examines how
to learn procedural knowledge for a task when the declara-
tive structure is known or assumed.

The notion of a schema as a fundamental unit of behavior
has been studied in both developmental psychology (Gins-
burg & Opper 1988) and computational neuroscience (Ar-
bib 1995). Arbib characterizes schemata as abstract units
of activity that generalize over similar experiences and map
those experiences to goal-directed actions (Arbib 1995). Ar-
bib designates two types of schemata: motor and perceptual.
Perceptual schemata represent concepts such as objects and
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their associated characteristics. For example, a perceptual
schema representing a ball will have associated attributes
such as “color,” “size,” and “velocity.” Motor schemata pro-
vide means of representing actions, such as throw, and can
be characterized by state variables such as “degree of readi-
ness” or “activity level.” Motor and perceptual schemata
can be composed into coordinated control programs, such
as THROWOBJECT.

We believe that such distinctions of perception and ac-
tion are misleading. Recent findings in neuropsychology
(Gallese et al. 1996) suggest that perceptual information
is more closely tied to the dynamics of interaction with the
environment. This notion is also consistent with the concept
of Gibsonian affordances (Gibson 1977); a perceptual fea-
ture is meaningful only if it facilitates an action. This work
does not suggest separate motor and perceptual entities in
the way described by Arbib, nor does it suggest having ex-
plicit (and distinct) perceptual schemata for separate objects
in the world.

We propose using probabilistic models of relational data
(Friedman et al. 1999) to learn the procedural structure of
a task. In particular, we will use a relational model to find
the statistical dependencies between sensorimotor variables
and task success. Relational models are useful because they
provide a framework for learning from experience in a va-
riety of settings. Once the declarative structure of a task
recommends an action, the model can use the observed sen-
sorimotor variables to determine which resources should be
employed. For example, a robot employing such a model
can learn how to pick up many objects, configuring a pol-
icy on features it has observed—such as picking up a large
heavy ball with two hands rather than one. In the remainder
of this paper we provide a more complete presentation of
how to design procedural knowledge experts using a partic-
ular class of relational models—relational dependency net-
works (RDNs) (Neville & Jensen 2003; 2004). Using this
framework, we are able to learn policies to successfully pick
up a class of objects from real robot data.

2. Related Work
There can be a large amount of environmental variation be-
tween separate executions of the same task. To react accord-
ingly to such variations, it is important to provide a frame-
work in which actions suppress disturbances in a reactive



manner. Huber (Huber 2000) provides such a framework
in which parametric closed-loop controllers define the prim-
itive organizational structure to behavior. In such a man-
ner, continuous real-time controllers represent discrete ob-
jectives, which capture the declarative structure of a policy,
while the execution of the policy (the procedural structure) is
defined by a controller’s resource (i.e., sensor and effector)
bindings.

Previous work has shown that finding the statistical de-
pendencies between various forms of data can lead to better
task performance. Most notably, Piater (Piater 2001) and
Coelho et al. (Coelho, Piater, & Grupen 2001) describe how
to learn visual features that can predict pre-grasp hand pos-
tures. Using these pre-grasp postures, the robot can increase
its efficiency by minimizing the amount of pure tactile prob-
ing that is necessary to ensure a grasp. Furthermore, Coelho
(Coelho 2001) shows how the dynamic response of a grasp
controller can potentially provide characteristic perceptual
information about the type of object being grasped.

Other work has examined correlating sensorimotor infor-
mation in humanoid robots. Natale et al. and Fitzpatrick et
al. (Natale, Metta, & Sandini 2004; Fitzpatrick et al. 2003)
learn to classify objects through interaction—both by push-
ing them and by grasping them. Kupiers et al. (Kupiers et al.
2005) uses a methodology that bootstraps knowledge from
low-level sensorimotor primitives, but shows that perform-
ing even simple skills requires a large number of distinct
learning algorithms. Work by Roy (Roy et al. 2002) allows
a robot to develop a visually grounded grammar yet rely
on predefined spatial relationships and objects. These ap-
proaches are task dependent and do not easily support gen-
eralization through a unified learning approach. This related
work does, however, emphasize that useful categorization of
sensorimotor features can lead to an appropriate course of
action.

3. Relational Data
Traditional machine learning algorithms assume that all rel-
evant training data contain the same set of observable (or
unobservable) variables. These types of non-relational mod-
els require that data instances are independently and identi-
cally distributed (i.i.d.). In other words, all instances have
the same structure and knowing something about one in-
stance tells you nothing about another. In the robotics do-
main, this is not the case. There are many different ways to
perform a task, and each case can require a different set of
actions. These instantiations of the task would not be iden-
tically distributed. Also, two instances of the same action
employed during a task might influence each other (consider
a task that requires grasping multiple objects that need to be
assembled). Such instances are therefore not independently
distributed. It seems natural, therefore, to use relational data
representations to overcome these issues.

Relational learning techniques (Friedman et al. 1999) are
prime candidates for learning procedural task knowledge be-
cause (1) different training episodes might exhibit varying
structure, and (2) we are interested in determining statistical
correlations between sensorimotor features and success in a
task. By framing the problem in an appropriate relational

way it is possible to find the most salient features of the task
from the robot’s perspective, which may not be obvious to a
programmer ahead of time.

Relational Dependency Networks

Dependency networks approximate the joint distribution of
the domain of variables with a set of conditional probabil-
ity distributions (CPDs), which are learned independently.
RDNs extend the concept of a dependency network to re-
lational settings. Such a graphical model is advantageous
in learning task expertise because we are most interested in
how sensorimotor features influence each other and the suc-
cess of intermediate task objectives. For example, with such
a model we could hope to learn that the scale of an object
will influence how a robot should reach to it, or how shape
features will influence a grasp. RDNs have been used to
learn models in diverse domains such citation analysis, the
Internet Movie Data Base (IMDb), and genomics.

There are three types of graphs associated with models
of relational data: the data graph, the model graph, and the
inference graph. The data graph represents objects in the
data as nodes (e.g., in standard database examples: authors,
papers, students, classes). Edges between these nodes
represent explicit relations (e.g., author-of, cites, enrolled-
in). Each object has a particular type and a number of at-
tributes and links associated with that type (papers have
“topics” and “citations”, students have “age” or “major”).
The dependencies between the attributes of nodes (either
within or across particular object types) are modeled in the
model graph. While the data graph explicitly character-
izes the dataset, the model graph is a learned feature of
the dataset, revealing information that is not necessarily ap-
parent ahead of time. The inference graph is the rolled
out instantiation of the model and data graphs; it can be
used to make statistical assertions and inferences about the
data. The inference graph overlays the dependencies from
the model graph onto the structural data graph, capturing
correlations among specific instances of the data. Figure 1
shows the three graphs for the citation analysis domain as
presented in (Neville & Jensen 2004).

4. Relational Dependency Networks
in Robotic Tasks

In this section we present a way of learning procedural task
knowledge for robotic tasks using RDNs.

Gathering the Data

To gather useful information from experience, the robot
must observe visual, tactile, and proprioceptive signals as
well as events generated by actions. Each trial implementa-
tion is a procedural instantiation of the declarative structure
of the task. In the experiments discussed in this paper, the
declarative structure is given a priori. If some subset of the
signals and events are recorded in a history, then learning
can proceed asynchronously (i.e., as the robot behaves in
the world) while different features from the captured data
are correlated. Because relational data need not be i.i.d.,
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Figure 1: Research Paper (a) Data Graph, (b) Model Graph, and (c) Inference Graph

each training trial can follow a different declarative struc-
ture, sometimes employing a controller multiple times with
different resource bindings. For example, a robot may try
to pick up an object by reaching to it with its left hand after
it first tries and fails reaching with its right hand. Similarly
a robot may try a number of different grasps (two-finger,
three-finger, enveloping, etc.) until it succeeds.

Representing Procedural Task Knowledge
In the context of robotic tasks, a proper RDN representa-
tion of objects and attributes needs to be determined before
learning algorithms can be applied. The fundamental unit
of activity that we have employed is controller based. It
seems natural, therefore, to make all RDN objects represent
controllers. Relations between them may be causal or con-
junctive. For example, relations might represent that REACH
comes before GRASP, or that REACH should be performed
in the null-space (Nakamura 1991) of OBSTACLEAVOID-
ANCE.

Attributes of controller objects can contain a wide vari-
ety of information that may be different for different con-
trollers. Following the representation used in the control ba-
sis work of Huber et al. (Huber & Grupen 1996), two im-
portant attributes of controllers are “resource-binding” and
“state.” For a REACH controller, the “resource” may be a
humanoid’s left or right arm. For a TRACK controller, it may
be a particular set of cameras. A controller’s “state” attribute
represents the binary convergence property at any given
time. Attributes can be real-valued and multi-dimensional.
They should contain any information gathered through the
execution of the controllers whose objects they are attached
to.

Figure 2 shows example objects for LOCALIZE, REACH,
and GRASP controllers. LOCALIZE contains information
gained through the processing of viewed images. The at-
tributes “locale” and “bounding box dimensions” represent
the xyz-positions of viewed objects and the dimensions
of their image-plane, respectively. The “orientation” at-
tribute of the REACH controller represents the resulting end-
effector orientation upon reach completion, which in gen-
eral is useful for performing grasp pre-shaping. The “fin-

gers” attribute of the GRASP controller designates the num-
ber of fingers that should be used to grasp. The “lift-able”
attribute indicates whether the object was lifted successfully
upon grasp completion. This is necessary because achieving
a grasp does not always mean that an object can be picked-
up. For example, consider grasping a long heavy box from
the end: the weight of the object might not allow the hand to
successfully lift the object despite grasp convergence.

Figure 2: Objects and Attributes for (a) LOCALIZE, (b)
REACH, and (c) GRASP

In general, the number of attributes available for a con-
troller may be infinite. A LOCALIZE controller, for example,
may gather information from a pair of stereo images. Be-
cause there are an infinite number of possible features avail-
able from an image (e.g., all Gaussian filters at all scales and
orientations), it may be necessary to sample those used to
build a model. This issue is beyond the scope of this paper,
but is currently being pursued by the authors.

5. PICKUP Experiments
In this section we present a schema for picking up objects
learned through actual experience with the UMass humanoid
robot, Dexter (Figure 3). Dexter has two 7-DOF Bar-
rett Whole Arm Manipulators (WAMs), each with a three-
fingered Barrett hand mounted at its wrist. A stereo camera
pair is also mounted on Dexter’s shoulders. For the experi-
ments presented in this paper, only one of Dexter’s arms was
used.



Figure 3: Dexter - the UMass bi-manual humanoid

The RDN uses the LOCALIZE, REACH, and GRASP ob-
jects shown in Figure 2. In addition to performing any visual
processing, the LOCALIZE controller finds the centroid of
an object from both image planes and performs a triangula-
tion to discern its spatial location. The REACH controller
moves the wrist to a specified location and is paramater-
ized by the desired resulting orientation (e.g., top or side).
The GRASP controller descends a gradient defined by the
squared wrench residual (Coelho, Piater, & Grupen 2001;
Platt Jr., Fagg, & Grupen 2002). It is parameterized by the
number of virtual fingers to be used (either two or three). Lo-
cal force and contact normal information is taken from indi-
vidual 6-DOF load cell sensors mounted on each of Dexter’s
fingertips.

One hundred trials were performed in which two
objects—a cylindrical coffee can and a rectangular box—
were placed in front of Dexter. The cylindrical object was
always placed right side up, but the box was placed either
standing up or laying on its side. The objects were placed
in locations uniformly distributed in front of Dexter. Most
locations were within the robot’s workspace, but some were
not. Furthermore, some locations were only reachable using
certain reach orientations; Dexter can reach further from a
side approach than a top approach.

In the course of the experimental trials, Dexter first local-
ized the object, performing background subtraction to dis-
cern the object’s 3D location as well as the bounding box
dimensions on the image plane. For simplicity, only one
object was presented at a time. Dexter then reached to the
object, randomly choosing to approach from either the top
or the side. If the reach failed, Dexter chose to reach again
using another approach. If any of the reach actions com-
pleted, then Dexter began grasping the object using either
two or three fingers. If a grasp failed, then Dexter could
chose to grasp again using another combination of fingers.
If any grasp succeeded, then Dexter applied force to the ob-
ject and attempted to lift it. In most cases, the object was
lift-able if it was grasped. However, Dexter could not lift the
box if it grasped it from the side while it was laying down.

Because each trial may require up to two reaches and
two grasps, each trial takes on one of four distinct structural
forms (Figure 4). By using a relational data representation,
we are able to learn a single model despite multiple instances
of GRASP or REACH—which may depend on each other—in

our training set. Note that this type of data would have to be
forced into a “flat” representation if non-relational learning
techniques were to be employed. Instead, all of the training
data is collected into a data graph.

Figure 4: Four data graph instantiations of the data

Learning the Procedural Knowledge
We have assigned the PICKUP task the declarative structure
LOCALIZE-REACH-GRASP using the intuition we, as pro-
grammers, have about how to pick up objects. In general,
the declarative structure for a task may not be known and
may need to be learned in conjunction with the procedural
knowledge.

The declarative structure provides a template from which
we can build our RDN and learn procedural knowledge ex-
pertise. The experimental data gathered with Dexter were
used to train the model, resulting in the RDN shown in Fig-
ure 5. The model was learned using the PROXIMITY system
for relational knowledge discovery1. The model captures
how resource attributes can be instantiated given other ob-
served variables.

Figure 5: PICKUP RDN built from experimental data

Attribute Trees
The RDN algorithm estimates a conditional probability dis-
tribution of each attribute. For each attribute of an ob-
ject, a locally consistent relational probability tree (or RPT)
(Neville et al. 2003) is learned showing how attributes of the

1PROXIMITY was developed by the Knowledge Discovery Lab-
oratory at the University of Massachusetts Amherst. It can be
downloaded from http://kdl.cs.umass.edu/proximity/



same object or attributes of neighboring objects influence its
value. Figure 6 shows the RPT for the “lift-able” attribute of
the GRASP object learned by PROXIMITY. Interpreting this
tree, we can see that if no grasp succeeds, then there is virtu-
ally no chance of the object being liftable. At the next level
of the tree, there is a split pertaining to how wide the object
is (in these experiments 159 pixels was deemed “wide” by
the learning system). If it is not wide, then there is a an 83%
chance of the object being liftable. If the object is wide,
and the robot reaches from the side, then there is only a 7%
chance of being able to lift it. If a top reach is made, then
there is a good chance the object will be liftable. This tree
is consistent with the observations made in the course of the
experiments and explained in the previous section. Note that
there is no indication of the number of fingers used in the
grasp in this tree. We can see from Figure 5 that the finger
count is conditionally independent of the value of “lift-able,”
given the success of the grasp.

Figure 6: Relational probability tree for the “lift-able” at-
tribute. The COUNT function counts the number of times
the specified object attribute has the indicated value (in
this case, the GRASP “convergence state” is equal to
true). This applies if there are one or more instances of
that object in a trial.

This RPT example makes apparent how the RDN archi-
tecture focuses a robot’s attention on only a small set of
available features to predict a given attribute value. Each
RPT, therefore, learns the affordance of its attribute with re-
spect to the task. At inference time, the RDN uses a Gibbs
sampling technique to bring together the locally consistent
RPTs for each attribute, only then determining a global
probability estimate.

Validation
While performing the experiments, many dependencies
were observable. For example, not all locations were reach-
able. The cylindrical object was only graspable with two
fingers from the side, but either two or three fingers from the
top. The box was best graspable with two fingers as opposed
to three. We can see quite clearly in Figure 5 that many
of these relationships are manifested in the learned model

graph. The dimensions of the object on the background-
subtracted image were the robot’s only notion of shape. As a
result, we would expect all of the GRASP attributes to be cor-
related with the “bounding box dimensions” attribute. Also
note that the “lift-able” attribute is dependent on the “con-
vergence state” of GRASP, as well as the “bounding box di-
mensions” of the object and the “orientation” attribute of
REACH. This is to be expected because only when grasping
the long box from the side (while it was horizontal) was an
object graspable but not liftable.

Ultimately, the true test of the system is how well it rec-
ommends resources for performing a task again. In this
section we show that the RDN model graph learned from
the experimental data can be used to construct a policy for
the robot to pick up objects of the classes discussed. More
specifically, the best values of the resource attributes can be
inferred from the model at decision points, given the ob-
served variables and the desired state variables.

To test the model, a number of trials were performed in
which the two objects were placed in front of Dexter and a
resource allocation was inferred from the RDN. When the
objects were placed in the robot’s field of view, the LOCAL-
IZE controller determined the “bounding box dimensions”
and “locale” variables. These observed variables were then
used, along with the desired state variable settings (REACH
and GRASP “convergence state,” and “lift-able” all equal to
true), to infer the values of REACH “orientation” and GRASP
number of “fingers.” In general, the model recommended
the policy in which it picked up the cylindrical coffee can
either from the top (with equal probability of two or three
fingers) or the side with two fingers. The policy to pick up
the box was to use two fingers (it rarely was able to pick
up the box with three fingers during training), always from
the top if it was laying horizontally, and either from the side
or top if was standing vertically. For a number of locations
outside Dexter’s reachable workspace, the model predicted
a very low probability of success for any resource alloca-
tion. All of these predictions were consistent with the train-
ing data and yielded a policy that allowed Dexter to pick up
the two objects correctly.

6. Conclusions and Future Work
In this paper we have proposed a novel architecture that
will allow a robot to learn about the complex statistical rela-
tionships present when performing tasks in the world. The
PICKUP task presented in Section 5 demonstrates the pro-
posed architecture with a specific example, but the approach
is general and can be applied to find the affordances of sen-
sorimotor variables in any given task. Many dependencies
between these features will not be obvious to a human, and
it is important to have learning techniques that will allow
a robot to discover these relationships from its own experi-
ence.

It is also important that the available feature set from
which the system can learn models is rich enough to ensure
procedural task knowledge in a variety of contexts. Coelho
showed that dynamic models characterizing the behavior of
controllers are useful in determining the environmental con-
text in which the controller is running (Coelho 2001). These



models were learned from the phase-space trajectory of a
grasp controller’s run-time execution and could then be used
to distinguish the shape of the object being grasped. Mem-
bership in such parametric models may be useful attribute
values for the RDN format presented in this paper because
they allow the controllers to function as abstract sensors.

There may, however, be an uncountable set of possible
features that are made available to the system. Learning a
model from a large feature set is intractable and far too time
consuming for a system that lives on a robot. In the future
we plan to look at tasks that require the robot to learn models
from only a sampled set of available features, resampling
if poor policies are learned. In such experiments it will be
necessary for the to robot mine those features that are useful
predictors, as well as ignore those that are erroneous.

To develop true autonomous systems, the declarative task
structure must be learned in addition to the procedural struc-
ture. There has been previous work in the control basis
framework in which abstract policies were learned using re-
inforcement learning techniques (Huber 2000). However,
as the available information streams increase, techniques
that rely on an explicit state space representation (e.g., re-
inforcement learning) become impractical when learning at
the most primitive level. Mining the sensorimotor streams to
learn procedural structure first allows reinforcement learn-
ing techniques to deal only at the more abstract declarative
level, which has a smaller dimensionality. We propose using
relational techniques to perform this mining because they
capture many properties of task experience, discussed in this
paper, in a natural and intuitive way.
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