
Coordinated Teams of Reactive Mobile Platforms
1

J. Sweeney, TJ Brunette, Y. Yang2, R. Grupen

Laboratory for Perceptual Robotics

Department of Computer Science

University of Massachusetts, Amherst

Abstract

This paper presents techniques for exploiting redundancy
in teams of mobile robots. In particular, we address tasks
involving the kinematic coordination of several commu-
nicating robots. Teams are modeled as highly redundant
spatial mechanisms for which multi-objective, concurrent
controllers are constructed using a generalization of null-
space control. The goal is to develop a methodology in
which the robustness and error suppression in a control
theoretic substrate can be used to preserve critical prop-
erties in teams of reactive robots. The resulting “safe”
control options can then be explored while guarantee-
ing global compliance with system specifications. The
proposed architecture depends on a set of concurrent,
low-dimensional control processes that interact in a well-
defined manner. Cascaded null space projections and co-
ordination templates are used to manage control interac-
tions across platforms that actively maintain constraints
for pairs of robots. Pairwise policies can then be com-
bined to represent coordinated, multi-robot tasks. To il-
lustrate the approach, we demonstrate a distributed con-
trol that maintains critical connectivity in line-of-sight
communication networks.

Keywords: constraint-based programming, hybrid

systems, reactive control

1 Introduction

We propose a hybrid robot control strategy for multiple
interacting robots. Swarms, especially biological swarms,
have been noted to produce interesting behavior using
massively distributed control algorithms (termites, ants,
bees, etc). Distributing swarm behavior over many in-
dividuals can be very cost effective and the swarm can
be robust to failure in individuals. However, the flexi-
bility and reconfigurability of such an approach is chal-
lenging as there do not exist adequate methodologies for
programming a swarm to do many different tasks. An n-
robot team of mobile platforms can be modeled as a 2n
dimensional path planning problem, but with predictable

1This work was supported in part by NSF CDA-9703217,
DARPA/ITO DABT63-99-1-0022 and DABT63-99-1-0004.

2Mr. Yang is now at Cisco Systems, San Jose, California.

scalability issues. Naive implementations can require ex-
ponential increases in compute time when an additional
robot is added. Moreover, run-time environments can
change quickly, so that plans must cover a large variety
of possible run-time contingencies to be useful. Finally,
centralized solutions can produce globally optimal solu-
tions in principle, but they do not in practice - due in part
to the preceding issues. However, distributed controllers
might be used to produce practical and scalable team con-
trollers if formalisms can be developed that provide feasi-
ble and correct solutions initially that adapt toward opti-
mal coordination policies incrementally. Our approach
aims to provide cost effectiveness while providing rich
programmability and a flexible run-time framework. We
overlay inter-robot communications and control interac-
tions that produce favorable (and correct) group dynam-
ics when stimulated by the environment.

Currently there is a great deal of interest in adaptive con-
trol architectures for non-stationary, nonlinear processes
[13, 12, 4]. Recent approaches postulate a family of lo-
cal models that can be used to approximate the optimal,
global control surface. This implies that robots - even

single robots - are expressed as collections of interacting

agents. This class of approaches generally rely on lo-
cal linear models and are applied to simple regulation or
tracking tasks. By switching controllers, or by reformu-
lating local models, a linear control substrate can be ap-
plied more generally to nonlinear and/or non-stationary
tasks. As a result, the robot control program is generally
more robust. But so far, implementations based on this
framework are not capable of guaranteeing distributed
behavior in a multi-robot system. This paper contributes
techniques that can be used to provide “best-effort” guar-
antees that important global properties will be preserved
in distributed behavior. “Best-effort” means that subor-
dinate control actions are projected into the null space
of global specifications so that incorrect interactions are
eliminated. By so doing, a distributed controller can ad-
dress multiple objectives simultaneously without compro-
mising critical performance guarantees. Under these cir-
cumstances, it is possible to assert that critical objectives
can be actively maintained by primary controllers against
environmental perturbations and interactions with other
concurrent controllers.

p. 1

2 Related Work

Subsumption programming has been used for reactive
robots in a behavior-based framework. Some such ap-
proaches advocate learning prerequisite skills that solve
predefined subproblems and then combining them in a
subsumption or voting framework [9]. Some use previ-
ously designed behaviors as primitives within the learning
framework [10]. The approach presented here falls into
this general category. Subsumption, however, is based on
a largely procedural model of behavioral interaction de-
signed by the system programmer that does not support
global assertions regarding system behavior.

The Autonomous Robot Architecture (AuRA), developed
by Arkin et al. at Georgia Tech [2], represents behavior
in the form of perceptual and motor schemas. Individual
behaviors are run as asynchronous, concurrent processes
representing high-level behavioral intentions. Behavior is
crafted as weighted, linear combinations of non-linear mo-
tor schemas. This paper extends this class of approaches
by addressing the range of possible interactions between
asynchronous schema. Our approach is couched in a con-
trol theoretic framework and organized using a discrete
event structure. Such an approach can provide perfor-
mance guarantees and leads to a reusable basis for be-
havior designed to be applicable in a wide range of appli-
cations and with a variety of multi-objective tasks.

A robot is redundant if it possesses more controllable de-
grees of freedom than are required to achieve a reference
configuration. Redundant systems may have an infinite
number of solutions for a given task. The system Ja-
cobian for such a system is redundant so that rows and
columns are no longer linearly independent (and the Jaco-
bian is no longer square). Consequently, a null space can
be identified in the manipulator Jacobian in which mo-
tions produce no progress toward the goal. For a forward
kinematic transformation, the null space of the Jacobian
at a given location is referred to as the self-motion man-

ifold. The Moore-Penrose generalized inverse (or pseu-
doinverse) of a redundant Jacobian selects the minimum
length solution among all candidate solutions. A null
space trajectory can be chosen to produce internal mo-
tions that avoid kinematic singularities that address force
and velocity constraints, or that optimize the kinematic
condition of the transformation manipulator with respect
to generic cost functions [6, 11]. In general, any configu-
ration space trajectory in service to a subordinate control
objective can be projected onto the null space of super-
ordinate objectives.

3 Redundant, Multi-Robot, Navigation

Controllers

The techniques above can be generalized to any con-
trol formulation that can be linearized locally to pro-

duce a control action (the negative gradient of the ar-
tificial potential) and an orthogonal null space defined by
the “level-curve” on the artificial potential function. We
employ these techniques to preserve constraints between
multiple robots running concurrent controllers whose ac-
tions may conflict.

Control Primitive {φ
gj

i } i, j ∈ R

A single controller is an association of an artificial poten-
tial, φ, and effector resources, i and sensor feedback, gj ,
drawn from resource pool R. Sensor feedback includes
goals and/or obstacles derived from robot j that may
have been observed directly by robot i or communicated
from robot j.

Coordination Primitives φi / φj i, j ∈ R

A coordinated pair of control processes can reside on
the same mobile platform (i = j), or may be dis-
tributed across platforms (i 6= j). These processes inter-
act through the / -“subject-to” operator which enforces a
local null space trajectory. In our application, we employ
a path planner based on harmonic potentials [7]. The
level curves in the harmonic potential of the dominant
controller define its null space globally and introduces a
nonholonomic constraint into the configuration space of
subordinate controllers. If, for example, φj represents
a property that the system must actively maintain, and
that property depends on the proximity to robot i, then
robot i may only move inside of the null space of φj -
actions in robot i must not cause robot j’s potential to
increase. If φi is a path toward and goal g, and φj is ac-
tively maintaining the line-of-sight between robots i and
j, then φi must project its gradient onto the null space of
φj in order to guarantee that its actions will not disturb
robot j’s objective.

3.1 Coordinating Multiple Robots

In this section, we will introduce a class of distributed
solutions which have a common format. Each is com-
posed of a combination of two path controllers - one that
preserves a kinematic line-of-sight (LOS) relationship be-
tween the two robots and another that executes a path to
the reference configuration, g. Line-of-sight is an impor-
tant kind of constraint to consider because it is an impor-
tant subgoal for communicating robots in a distributed
control environment. If robot i is the “leader” (headed
toward the goal g), this set of controllers can be written:

Φ|g{i,j} = {φ|gi / φ|
LOSij

j , φ|gi / φ|
LOSji

i } (1)

These pairwise control options are pictured schematically
in Figure 1. If we permit the leader/follower roles to be
reversed, there would be four possible elements of the set
Φ|g{i,j}.

The first option in Equation 1 states that controller φ|gi
will move robot i to the external goal g by descending
a harmonic potential, φ. It does so in a manner that

p. 2

ji LOSij

(a) PULL

i jLOSji

(b) PUSH

Figure 1: Two asymmetric configurations of the pairwise
LOS controller.

does not disturb the constraint expression φ|
LOSij

j by the
/ -“subject-to” constraint. This is the leftmost control
configuration in Figure 1, deemed the pull primitive. The
complementary configuration shown in Figure 1(b) uses
the LOSji region to represent the LOS constraint. This
configuration is referred to as the push configuration.

Figure 2 shows a sequence of frames derived from our im-
plementation of a pull coordination primitive for use as a
simple, two robot leader/follower controller on our UMass
UBot platforms. The harmonic potential of both robots
are updated continuously, and the controllers are recom-
puted periodically. In our implementation, this happens
at between 2 and 3 Hz.

3.2 Estimating LOS Regions and Determining

LOS Goals

Two types of goals are introduced with which to define
the null space operator for interacting controllers. In Fig-
ure 3, there are two types of otherwise equivalent goals
configurations: LOS goals, and occlusion threshold goals.
If the dominant controller is safely inside the interior of
the LOS goal set, then both controllers run concurrently
under the management of the null space operator. If,
however, the dominant controller finds itself on the edge
of the LOS region (in the set of “occlusion threshold”
goals), then the subordinate controller is disabled until
the dominant controller enters the LOS goals once again.
The relative size and position of LOS goal sets and occlu-

occlusion
boundary

occlusion
threshold

i j

ijLOS region

Figure 3: Two different types of goal configurations for
defining subordinate controller activation.

sion threshold goals causes significant measurable vari-
ation in the performance of the coordinated pair. The
relative size of the threshold region influences the aggres-
siveness of the follower’s motion controller as shown in
Figure 4.

LOS regionij

ijLOS goals

i j

ij

ij

ji
LOS goals

LOS region

(a) (b)

Figure 4: The pull configuration can select LOS goals in two
qualitatively different ways; (a) a conservative fol-
lower that does not move until occlusion threat-
ens, and (b) an aggressive follower that tracks the
leader more closely.

Teams of n > 2 robots can assemble controllers from
combinations of many push and pull control configura-
tions that serve to coordinate pairs of robots. Figure 5
illustrates a relatively aggressive follower (robot 1) that
follows the leader (robot 0) closely as it moves toward
the goal, denoted by the black square in the lower right
quadrant of the map. The grey lines between the robots
represent the LOS property. Robot 2 is a stationary hub
in this example that maintains a push relationship with
robot 1. Only when the LOS from robot 2 to robot 1 is
threatened, does robot 1 increase the following distance.
Assuming robot i is the leader and is followed by robots
j and k, there are four configurations between the two
contiguous pairs of robots 〈i, j〉 and 〈j, k〉: pull-pull, pull-
push, push-pull, push-push. This set represents all com-
binations of control options or i − j − k sequences. If we
permute the three robots, there are 6 × 4 = 24 possible
coordinated triples that can guarantee that LOS will be
preserved but are otherwise unsorted.

This approach scales to n robots by virtue of employ-
ing pairwise coordination primitives that bound the scope
of inter-robot communications and whose per processor
compute load is nearly evenly distributed for singly con-
nected chains. Load can be balanced by noticing that
the LOS regions required can be (1) computed directly
using sensor data, or (2) constructed using parameters
communicated between peers.

In team behavior, it may be each robot’s prerogative to
select a run-time strategy to satisfy global performance
constraints. For instance, a robot whose battery is low
may elect to adopt a less aggressive LOS policy. Every
pair in a singly connected network topology may, in fact,

p. 3

Figure 2: A two robot leader/follower coordination primitive in action. The lower robot is the leader and is moving right to left.

Figure 5: A typical aggressive pull behavior - the follower tracks the leader closely. The grey lines between the robots represent
the LOS property.

choose to preserve the LOS specification in a manner ap-
propriate for the local run-time conditions. In Figure 6,
robot 0 is leader, and robot 1 selects an aggressive pull

strategy for maintaining 0-1 line-of-sight. Robots 2 and 3
adopt a more conservative pull strategy. Robot 4, in this
example, was designated a stationary host.

3.3 Sorting Equivalent LOS-Preserving Con-

trollers

A simulator was used to test the performance of different
versions of the coordinated pull strategy. The test envi-
ronment was a simple office-style floor-plan such as those
pictured in Figures 5 and 6. The position of the leader,
the follower, a stationary host, and goal were randomly
generated such that they formed an initially valid line-
of-sight configuration. Goal locations were classified into
two sets, based on the number of robots that would be
needed to be active in a coordinated LOS behavior for the
leader to reach the goal. Goals that can be reached using
only one active robot maintaining LOS with the station-
ary host are denoted “one-robot” problems. Goals that
required a LOS chain using two robots and one stationary
host are called “two-robot” problems.

In each trial, the leader searched for the goal while line-of-
sight was maintained throughout the team using the pull

coordination primitive. By varying the occlusion thresh-

old of the pull controller, three different levels of aggres-
siveness of the LOS behavior were chosen qualitatively,
which we deemed AGGRESSIVE, NEUTRAL, and CON-
SERVATIVE. The time taken to reach the goal and the
total energy consumed were recorded for each trial. Two
sets of trials were performed. The first set used goals that
were both one-robot and two-robot problems. The sec-
ond set only selected goals that were two-robot problems.
Two-robot goals could either be located far enough away
from the leader to require the LOS chain, or they could
be located behind an occluder. Figure 7 summarizes the
results of running 100 trials for each set of goals, using
the three variations of the pull primitive.

From these results, we can see that the AGGRESSIVE
strategy took the least time in general, as we might ex-
pect, while the NEUTRAL configuration required less
time than the CONSERVATIVE configuration. In the
two-robot trials, where encounters with occluders hap-
pened more often, the time difference between the three
styles of behavior was larger than in the first set of tasks.

In both sets of trials, AGGRESSIVE strategies took more
energy in general, also as predicted. This trend is accen-
tuated in the set of trials using both one- and two-robot
problems, where some of the randomly placed goals are
within LOS of the stationary host. In such a situation,
conservative strategies can require only one robot to be

p. 4

Figure 6: A sequence of aggressive and conservative pull controllers applied in a multi-robot situation. The goal is the solid
black square in the lower left. The grey lines between the robots represent the line-of-sight property.

active, while aggressive strategies cause the extra robot
to tag along with the leader unnecessarily, thus increasing
the total amount of energy consumed.

3.4 Generalizing Network Connectivity

Since robots must interact, they must actively preserve
network connectivity between peers. In this section, we
continue to use the LOS kinematic constraint to represent
connectivity and show how larger scale networks might be
preserved. Equation 2 describes network connectivity in
a network of k robots. The push/pull control configura-
tions for a given pair of robots are arranged symmetri-
cally in G’s off-diagonal elements. An element Gn

k [i, j] is
a Boolean variable asserting whether robots i and j are
connected in n hops. Push/pull controllers that achieve
LOS goals can be employed both to evaluate the cur-
rent state of connectivity in the system, or to determine
whether a new assignment of push/pull controllers among
the constituent robots will be able to attain or preserve
LOS connectivity.

Gn
k =











φlos0

0
φlos1

0
. . . φlosk

0

φlos0

1
φlos1

1
. . . φlosk

1

...
...

...

φlos0

k φlos1

k . . . φlosk

k











n

(2)

For example, Equation 2 can recruit k robots into a net-
work by determining who among its peers are LOS con-
nected and then protect those peer relationships by en-
gaging an adequate complement of pairwise push/pull re-
lationships. G defines the equivalence class of “network
preserving” control options.

4 Conclusion and Discussion

In this paper we have proposed a formalism for represent-
ing control interactions in teams of mobile robots with
excess degrees of freedom. We have demonstrated its use
in tasks that require kinematic properties in the team.

The Line-of-Sight (LOS) communication model is devel-
oped in some detail to illustrate the ideas proposed. We
discussed how LOS constraints can be configured to be
functionally equivalent, but optimized for different crite-
ria depending on the state of the local robot. We present
results in simulation showing that different LOS param-
eters produce different qualitative behaviors in otherwise
equivalent control options.

In future research, we plan to expand our implementa-
tion to larger teams of UMass UBots and to use learning
algorithms to develop policies for robots to choose among
equivalent options based on observable state information.
We are considering applications such as formation con-
trol, parallel search controllers, bounded overwatch lo-
calization (using subsets of the team to track movements
and correct for odometry errors in another, possibly dis-
joint, subset), and network QoS guarantees.

References

[1] S. Akishita, S. Kawamura, and K. Hayashi. Laplace
potential for moving obstacle avoidance and approach of a
mobile robot. In 1990 Japan-USA Symposium on Flexible

Automation, A Pacific Rim Conference, pages 139–142,
1990.

[2] R.C. Arkin and T. Balch. Aura: Principles and
practice in review. Journal of Experimental and Theoret-

ical Artificial Intelligence, 9(2), 1997.

[3] J. Barraquand and J.-C. Latombe. Robot motion
planning: A distributed representation approach. In-

ternational Journal of Robotics Research, 10(6):628–649,
December 1991.

[4] R.A. Brooks. A robust layered control system for a
mobile robot. IEEE Journal of Robotics and Automation,
2(1):14–23, March 1986.

[5] J.F. Canny. The Complexity of Robot Motion Plan-

ning. MIT Press, Cambridge, MA, 1988.

p. 5

[6] S.L. Chiu. Control of redundant manipulators for
task compatibility. In Proceedings of the 1987 Conference

on Robotics and Automation, volume 3, pages 1718–1724,
Raleigh, NC, April 1987. IEEE.

[7] C. Connolly and R. Grupen. On the applications
of harmonic functions to robotics. Journal of Robotics

Systems, 10(7):931–946, 1993.

[8] A. Gelb, editor. Applied Optimal Estimation. Tech-
nical Staff — The Analytical Sciences Corporation, The
MIT Press, Cambridge, MA, 1986.

[9] J. Hoff and G. Bekey. An architecture for behavior
coordination learning. In Proceedings of the 1995 IEEE

International Conference on Neural Networks, pages
2375–2380, Perth, Australia, November 1996. IEEE.

[10] P. Maes and R. Brooks. Learning to coordinate
behaviors. In Proceedings of the 1990 AAAI Conference

on Artificial Intelligence. AAAI, 1990.

[11] Y. Nakamura and H. Hanafusa. Optimal redun-
dancy control of robot manipulators. Journal of Robotics

Research, 6(1), Spring 1987.

[12] M.H. Raibert. Legged Robots that Balance. MIT
Press, Cambridge, MA, 1986.

[13] A.A. Rizzi, L.L. Whitcomb, and D.E. Koditschek.
Distributed real-time control of a spatial robot juggler.
IEEE Computer Magazine, 25(5), May 1992.

[14] J. Rosenblatt. Damn: A distributed architecture
for mobile navigation. In Proceedings of the 1995 AAAI

Spring Symposium on Lessons Learned from Implemented

Software Architectures for Physical Agents, Stanford, CA,
March 1995. AAAI Press.

AGGRESSIVE NEUTRAL CONSERVATIVE
0

50

100

150

200

250
Average Time per Trial

1− & 2−Robot Problems
2−Robot Problems

AGGRESSIVE NEUTRAL CONSERVATIVE
0

50

100

150

200

250

300
Average Energy per Trial

1− & 2−Robot Problems
2−Robot Problems

Figure 7: Average Time and Energy for 100 trials using
aggressive, neutral, and conservative levels of ag-
gressiveness in following with the pull coordina-
tion primitive. Each set of trials was run in both
one- and two-robot problems and exclusively two-
robot problems.

p. 6

