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Abstract— Probabilistic Roadmaps (PRM) are a random-
ized tool for path planning in configuration spaces where
exhaustive search is computationally intractable. It has been
noted that the PRM algorithm’s computational cost can
be greatly reduced by reducing the number of samples
necessary to construct a successful roadmap. We examine
the information theoretic properties of roadmap construction
and propose sampling techniques based upon maximizing
the information gain of the roadmap for each configuration
sampled. Instead of sampling algorithms which are meant to
understand the entirety of configuration space, our sampling
is focused on finding configurations which facilitate roadmap
construction. We show empirically that these approaches can
lead to a significant reduction in the number of samples
necessary to construct a useful roadmap.

I. I NTRODUCTION

Path planning in high dimensional spaces is difficult.
In some cases it has shown to be PSPACE hard [6].
Complete deterministic path planning is often compu-
tationally impractical. The central problem is that the
size of the configuration space is exponential in the
degrees of freedom of the robot. Probabilistic Roadmap
(PRM) path planning techniques [5] were designed to use
randomization to make configuration space path planning
computationally tractable.

Since the collision checking and path planning associ-
ated with adding new samples requires most of the com-
putation in PRM construction, reduction of the number
of samples necessary for the construction of a complete
roadmap is desirable.

Originally, the PRM technique used uniform random
sampling to construct a roadmap in configuration space
[5]. More recently there have been a number of alternative
sampling strategies proposed as improvements to PRM
algorithm. These can be generally characterized into de-
terministic approaches which guarantee a certain density
of sampling [2], [3], and guided approaches which use
heuristics to determine the areas of configuration space
which should be examined [1], [4].

A. Basic PRM Path Planning

The basic PRM algorithm consists of construction,
expansion and query steps. The construction step of the

PRM algorithm operates as follows:
Given an empty roadmap,R(V,E), for a specified

number of samples do the following: Select an unob-
structed pointp in free space. Addp to the roadmap
R(V,E). Find the setN consisting of MaxNeighbors
nearest neighbors top. For eachn ∈ N if p andn are in
different connected components inR(V,E) and a straight-
line path is possible betweenn andp, add an edge fromn
to p in the roadmap. After the specified number of samples
have been selected, return the roadmapR for expansion.

The PRM expansion step attempts to connect discon-
nected components inR(V,E). For a specified number
of iterations, selectv, the the most “difficult” vertex in
V . Difficulty is measured by some heuristic, usually the
percentage of failed path planning attempts involvingv.
Next, selectN , the set ofv’s nearest neighbors as above
and attempt to connectv to all n ∈ N wherev andn are
not in the same connected component. After a specified
number of iterations, returnR(V,E) for path planning.

Given a roadmapR(V,E) and two pointsp1 andp2, the
PRM algorithm performs path planning by first findingv1,
the vertex in the roadmap closest top1. Next, it selectsv2

equivalently forp2. Given v1, v2 andR(V,E) PRM uses
a standard path querying technique to find a path between
v1 andv2 in R(V,E).

B. Deterministic extensions to PRM Path Planning

It has been suggested that quasi-random deterministic
approaches to sampling can improve the performance of
the PRM algorithm [2], [3]. These approaches use quasi-
random sequences to generate sets of configuration points
which guarantee both good coverage and a bounds on the
density of samples in any given region. Additionally they
offer incremental refinement of the roadmap produced by
the path planning algorithm.

However, the density of sampling required is deter-
mined by the most difficult area of the configuration space.
As a result, unless the configuration space is uniformly
difficult, deterministic quasi-random sampling will place
unnecessary samples in the configuration space.



C. Guided Sampling

In contrast, guided sampling attempts to bias the choice
of configurations towards those areas of configuration
space which are thought to contain the configurations
necessary for a complete roadmap. Guided sampling does
not enforce uniform sampling over the entire configuration
space. If the informed sampling is ideally designed (and
this of course is the goal, however unattainable) then the
roadmap will contain a minimum number of vertices. If
an ideal sampling technique knew the location of these
vertices, it would restrict its search to these points.

1) Previous guided samplers:Earlier work in infor-
mation based sampling has focused upon finding areas
near obstacles [1] and narrow passages in configuration
space [4]. These efforts are generally motivated by the
knowledge that important areas in configuration space are
necessarily near obstacles and the difficulty of a problem
is often defined by its narrowest passage.

There are two reasons why these measures are sub-
optimal. They are local methods which do not take into
account the larger context of the roadmap under construc-
tion. To them, an obstacle/passageway is equally important
even after a roadmap has been successfully constructed
around/through it. Samples will continue to be placed near
an obstacle or in a passageway long after it has been
successfully incorporated into a roadmap.

Secondly, the PRM algorithm was designed to avoid
the need for a complete covering of the configuration
space since such a covering can require a large number
of samples [9]. However, previous methods for biased
sampling in PRM construction have required information
about the configuration space such as the shape and
location of obstacles. Computing this information, which
implies the need for at least an approximate covering of
the perimeter of the obstacles is precisely the computation
the original PRM algorithm was trying to avoid. Instead
our methods for biased sampling focus upon creating
successful, connected roadmaps, i.e., understanding the
connectivity of the configuration space which does not
require even an approximate covering to be successful.

Previous work has suggested using information gain as
a guide for roadmap construction [11], [10]. In this work
the robot was given the ability to explore the world with
its sensors and use this information to path plan. Each
decision about which area of workspace to explore with
the robot’s sensors was made in an effort to maximize the
expected reduction in entropy of the robot’s knowledge of
the configuration space. Our work differs importantly from
this work since we are focusing on reducing the entropy of
the roadmap rather than the entropy of the configuration
space.

II. ENTROPY-GUIDED PRM

In contrast to the previous methods (Section I-C)
which were a priori and local criteria, we propose an
adaptive sampling technique which quickly understands
easy spaces, analyzes the roadmap under construction to
find difficult regions and focuses sample selection there.
It will choose the areas in the configuration space which
can lead to the greatest improvements in the success of
the roadmap. To measure the contribution of a sample to
the improvement of the roadmap we use the notion of
information gain developed in formal information theory
[7], [8].

In information theory, entropy is the measure of the
predictability of a distribution. The entropy for some
discrete distribution over a set of valuesD is defined as:

H(D) = −
∑
d∈D

p(d) log p(d)

We can define the entropy of a system when some
variableK has a particular valuek:

H(S|K = k) = −
∑
d∈D

p(d|K = k) log p(d|K = k)

If we consider gaining some new informationK about
the system, but only have a distribution over possible
values ofK we can define conditional entropy ofS given
K as:

H(S|K) =
∑
k∈K

p(k)H(S|K = k)

Information gain represents the change in the entropy
of a system as a result of gaining knowledge related to
the system. For some systemS and some new knowledge
K, information gain is:

IG(S, K) = H(S)−H(S|K)

Entropy has a minimal value at zero, pursuing a strat-
egy which maximizes the decrease in entropy or informa-
tion gain moves us to a low entropy state as quickly as
possible given our current knowledge and representation
of the entropy of the system. If we design our entropy
measure so that a state with low entropy corresponds to
a solution to our problem (in this case path-planning)
information gain can guide us along a rapid path to a
solution.

A. Driving Sampling with Information Gain

In the case of roadmap building, we are trying to
maximize the information gain for each sample we add
to the roadmap under construction. To use this to inform
our sampling algorithm then we must derive a sampling
strategy which selects points that maximize the informa-
tion gain for a particular roadmap. Given some roadmap
R we know there exists some set of pointsPR which
maximize the information gain for roadmapR. Our task



is to design a sampling strategyX, such that∀R,X(R) ∈
PR. That is, for any given roadmap, the functionX will
select a point which maximizes the information gain for
that roadmap. Due to our lack of knowledge about the
configuration space we are unable to determine the point
which maximizes the information gain. Instead select the
point which maximize theexpectedinformation gain.

Thus we propose a modified PRM algorithm which
proceeds as follows:

Entropy-Guided PRM
R is an empty roadmap
For iterations

Selectp = X(R)
Add p to the roadmap in the traditional manner

B. Entropy of the Roadmap

To successfully measure the information gain of a point
added to a roadmap we need to analyze the entropy of a
roadmap. We must choose some distribution which is char-
acteristic of the roadmapR. (Our choice of distribution is
important since it will drive our sampling.) It is necessary
that when the entropy of the distribution we select is zero,
that the roadmap be complete. If this were not the case
then sampling would stop prior to the completion of the
roadmap.

Initially it might seem intuitive to use the distribution
over the probability of successful path being produced by
the roadmap. However, since a roadmap which fails 100%
of the time has as low entropy as a roadmap that succeeds
100% of the time, half of the time the decreasing the
entropy of this distribution provides the wrong motivation.
Whenever the probability of path planning success is less
than 50% our sampling algorithm is driven to succeed as
little as possible. This is not desirable.

Consider instead, the distribution of connected com-
ponents. Remember that the roadmap R is simply a
graph with one or more connected components. Define
a functionf(x,R), which when given some configuration
x returns the closest connected componentRi to which
a straight-line path is possible. If a configuration is cho-
sen which cannot connect to any connected components
(such as when the roadmap is empty) it creates a new
connected component containing simply that point. This
function applied to a configuration chosen uniformly at
random defines a distribution over configurations. For each
connected componentRi, this function defines an volume
of points Ai such that∀p ∈ Ai, f(R, p) = Ri. Let
Vfree be the volume of free configuration space, then the
probability of selecting a point from free space which will
connect to some componentRi is equal to the probability
of the point landing in the component’s volumeAi,
e.g. Ai/Vfree. This defines a probability for each of the
components in the roadmap. The entropy of the roadmap

is given by summing over all connected components:

H(R) = −
∑

Ri∈R

P (Ri) log P (Ri) = −
∑

Ri∈R

Ai

Vfree
log

Ai

Vfree

Adding some pointp to a roadmapR will result in
a new roadmapR′ which will contain a new connected
componentRu which consist either solely ofp or a
combination of p with several connected components
already inR. Given this we can define the information
gain provided by adding some pointp which results in
the new roadmapR′

IG(R, p) = H(R)−H(R′)

IG(R, p) = −
∑

Ri∈R

Ai

Vfree
log

Ai

Vfree
−

−
∑

Rj∈R′

Aj

Vfree
log

Aj

Vfree

IG(R, p) =
1

Vfree
(−

∑
Ri∈R

Ai log
Ai

Vfree

+
∑

Rj∈R′

Aj log
Aj

Vfree
)

Noting that 1
Vfree

is constant:

IG(R, p) ∝ −
∑

Ri∈R

Ai log
Ai

Vfree
+

∑
Rj∈R′

Aj log
Aj

Vfree

Since the entropy of the current roadmap is fixed, the first
term is constant. Information gain is maximized if the sec-
ond term in the sum is minimized. Connecting the largest
volume of previously disjoint connected components will
maximize the decrease in entropy of this distribution. Not
only does it reduce the number of connected components
over which the summation is performed (|R′| < |R|) but
it also increases the probability that configurations chosen
uniformly at random will be nearest the newly merged
component. As this probability increases, the log of the
probability becomes closer to zero.

III. A N IMPLEMENTATION OF ENTROPY-GUIDED PRM

We use the intuition developed in the previous sec-
tion to implement an instantiation of an entropy-guided
PRM algorithm. In this implementation we use connect-
ing pairs of disconnected components in the roadmap
as the sampling technique which attempts to maximize
the expected information gain. Alternative entropy-guided
implementations would use other methods to maximize
the information gain, part of our future work is the
development of these techniques.

The component-connecting instantiation of entropy-
guided sampling extends the standard PRM algorithm in
two ways: For each connected componentRi in a roadmap
R, a volume of configuration space,Ai, is maintained.



At each step when a configuration pointp is added to a
connected componentRi, the volumeAi is updated to
include the new pointp.

To sample a new configuration point, two connected
componentsRi, Rj are selected from from the roadmapR.
The selection of connected components is biased towards
components which are larger and closer together. We
choose pairs of connected components with a probability
weighted by the expected value of connecting them. This
value is given by the probability that a path is possible
between the point chosen and each of the components
multiplied by the sum of the volumes of both components:

P (PathPossible|distance(Ai, Aj)/2)(Ai + Aj)

This measure is directly proportional to the expected
decrease in entropy since the sum of the two volumes
reflects the potential decrease in entropy resulting from the
connection of the two components, while the probability
of connection reflects the likelihood that such a connection
will actually occur.

Once two connected components are chosen,A′, a
volume of configuration space which lies between their
volumes Ai, Aj is computed. A new uniform random
configuration pointp is drawn fromA′.

There are two special cases in this point selection.
The first is that some percentage of the time a new
configuration point is chosen uniformly at random from
the entire configuration space to ensure total coverage of
the configuration space. The actual percentage of points
drawn in this manner begins at fifty percent when the
roadmap is initialized and decreases as the number of
samples grows to a minimum of ten percent. These num-
bers appear to work well but no attempts have been made
to optimize this parameterization. Secondly, whenever
roadmap contains a single connected component, points
are also drawn uniformly from the entire configuration
space. The algorithm completes when a specified number
of samples have been chosen.

Although at first blush this method may seem very
similar to the component expansion steps of other in-
stantiations of PRM it differs in two important ways;
Existing PRM construction algorithms attempt to connect
components selected by the “difficulty” of their nodes. A
measure which is assumed, but not shown, to be a proxy
for their importance. In contrast we are measuring the
potential gain directly. Second, it uses attempts to connect
disconnected components as its sampling strategy through-
out roadmap building rather than as a post-processing step.

A. Bounding Boxes as an approximation of components

Optimally, when we maintain the volumeAi around
some connected componentRi we would calculate the
true volume around each connected component and use
that as the input to bias out sampling towards connecting

Fig. 1. The maze with a 6-DOF robot

components. The volume around each connected com-
ponent is defined as the set of pointspi from which
there is a straight-line path to some configuration in the
connected component and no point in any other con-
nected component is closer top. Calculating this volume
is roughly equivalent to computing the Voronoi region
around each connected component. Such calculations are
quite expensive. As a result it makes sense to use an ap-
proximation for the volume. We use a max-min bounding
box as an approximation of the space around a connected
component. A max-min bounding box is defined in each
dimension by the maximum and minimum values of that
dimension over all points in the component.

IV. EXPERIMENTS

Several different PRM algorithms were used for path
planning in a number of worlds. For every world we ran
each algorithm for a number of samples. At each number
of samples we analyzed the accuracy of the roadmap
which was built with that number of samples.

We define roadmap accuracy,p(success), to be the
probability that a roadmap can find a path between two
random points in free configuration space. To estimate
the accuracy of a roadmap we choose one hundred pairs
of random free configurations and attempted to path plan
between them using the roadmap. The percentage of
successful path planning attempts is then used as the
accuracy of the roadmap. In each of the graphs shown
below each point is the average over fifty independent
runs of the path planning algorithm.

The first set of worlds we used to test the planners
were two-dimensional planar mazes. The maze we used
is shown in Figure 1. Path planning was performed in this
maze for robots with six, eight and ten degree-of-freedom,
free floating robots.

As can be seen from the results (Figure 2), in these
environments the entropy-guided algorithm provided sig-
nificant improvements in performance, especially as the
degree-of-freedom of the robot increased. In the case
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Fig. 2. Results for free-floating robots

of the ten degree-of-freedom robot neither OB-PRM,
expansive-PRM or traditional PRM have made any head-
way in the maze while our implementation of entropy-
guided sampling has largely solved the maze.

The second set of worlds we used was also two
dimensional planar worlds, however these robots were
stationary.

As can be seen from the results, bounding box sam-
pling, while performing better with statistical significance
than standard and OB-PRM did not result in large im-
provements. This demonstrates some of the limitations of
the max-min bounding box approximation used for this
implementation of entropy-guided PRM. In worlds where
the bounding boxes surrounding connected components
have a high degree of overlap, the performance of the
approximation degrades to that of standard PRM. While
it is comforting to know that the max-min bounding box
approximation can never do worse than standard PRM,
better bounding box approximations are expected to result
in similar types of improvements seen in mazes.
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Fig. 4. The two mazes which were compared

A. Orientation of Bounding Boxes

One concern of the bounding box strategy, especially
in the maze, is that the workspace is at least partially
oriented to the bounding boxes. To ensure that our success
was not based on this alignment, we ran two experiments
with the same simple u-shaped maze In one instance the
maze was oriented with the x-y axis (and thus a portion
of the bounding box). In the other the maze was rotated
forty five degrees.

From the graph in Figure 5 it can be seen that the there
is not a significant difference between the performance
of all three algorithms on the two different worlds. And
in both cases entropy-guided PRM outperforms the other
algorithms.
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DOF Width Entropy PRM QRM
2 0.03 112 195
3 0.05 281 579
6 0.10 3085 4052

TABLE I

THE AVG. NUMBER OF SAMPLES NECESSARY FOR SUCCESS

B. Comparison to deterministic techniques

In order to compare our work with entropy-guided
PRM to current efforts in deterministic sampling, we
reproduced the world used in [3] and path-planned in it
using our entropy-guided implementation. The results of
this are given in table 4. For each algorithm and degree
of freedom, the average number of samples necessary
to create a roadmap which could path plan through the
passageway is listed. As in [3] the numbers are the average
of one hundred runs of the algorithms. Entropy-guided
PRM significantly outperforms the numbers given for the
QRM algorithm.

V. CONCLUSIONS

Decreasing the number of samples necessary to con-
struct successful roadmaps significantly reduces the com-
putational demands of PRM. We have proposed a novel
class of sampling strategies for PRM that are based upon
information theory. We show that the goal of maximizing
information gain suggests a variety of new sampling
strategies including one which focuses on connecting the
disconnected components in configuration space.

To demonstrate these ideas empirically we have imple-
mented a sampling strategy which uses a simply max-min
bounding box to approximate the volume surrounding a
connected component. This sampling strategy has been
shown to result in significant improvements over existing
strategies in multiple environments with increasing bene-
fits in higher dimensional configuration spaces.
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