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Abstract— Probabilistic roadmap planners have proven to be
effective in solving complex path planning problems. These plan-
ners sample the configuration space to compute a representation
of its free space connectivity. One of the major difficulties
for this approach is the planning of a path through narrow
configuration space passages, since samples are placed inside
narrow passages only with small probability. To address this
problem, approaches have been devised that rely on the medial
axis of the workspace to bias sampling in configuration space
such that the probability of generating samples inside narrow
passages is increased. This paper introduces a novel algorithm
for computing an approximation to the medial axis, which can be
computed more efficiently than the exact or discretized medial
axis. We demonstrate that, compared to the true medial axis,
this approximation is equally well suited to bias the sampling
in probabilistic roadmap planners. Furthermore, we present
a novel sampling strategy based on the approximated medial
axis. This strategy results in high sampling density in narrow
passages, while sampling open spaces sparsely. Experiments
demonstrate the effectiveness of the medial axis approximation
and its application to motion planning based on the proposed
sampling scheme.

I. INTRODUCTION

Path planning is a provably difficult problem [16].
Sampling-based approaches, and most prominently probabilis-
tic roadmap planners [11], have proven to be very effective
techniques for solving path planning problems. These ap-
proaches compute a roadmap that represents the connectivity
of the configuration free space by collision-free edges. The
roadmap is obtained by sampling the configuration space
and subsequently connecting nearby samples lying in free
space. For probabilistic roadmap (PRM) planners, sampling
is performed uniformly at random. If the configuration space
contains a narrow free space passage, the probability of placing
a collision-free sample in it is very low. This is commonly
referred to as the narrow passage problem.

To address the narrow passage problem, the density of
samples can be increased. As a consequence, the sampling
density for the entire configuration space will be dictated by
its most narrow passage, resulting in an excessive number of
samples in open areas of configuration space. To bias the
sampling towards narrow passages it has been proposed to
place samples in close spatial proximity to the medial axis of
the workspace and thus far away from obstacle boundaries.
Biasing samples towards the center of narrow passages in-
creases the probability of generating a free configuration inside

the passage, improving the performance of PRM methods [7],
[9], [10], [14].

The computation of the medial axis, however, can itself
be a computationally expensive operation. While various al-
gorithms can compute the medial axis of simple polyhedra
composed of a few hundreds of triangles, it is non-trivial to
scale them to more complicated models. This is a consequence
of the instability and the algebraic complexity of the medial
axis. In order to address these problems, various algorithms
to approximate the medial axis have been proposed (see
Section II). Most of these methods focus on the accuracy of the
approximation and consequently still require extensive com-
putations. For the application in PRM planners the accuracy
of the approximation is less important than the computational
efficiency. Furthermore, in large open areas only a coarse
approximation of the medial axis is needed, as it is easy to
determine collision-free samples in those areas.

In this paper, we propose a novel algorithm to approximate
the medial axis. The proposed algorithm has several desirable
properties. First, the algorithm adapts the density of points
used to represent the approximated medial axis based on
local properties of the solid. This is desirable for probabilistic
motion planning. Second, the algorithm is computationally
very efficient. As shown in Section V, it can compute the
approximated medial axis much more efficiently than previous
methods. Third, the algorithm allows the user to trade off ac-
curacy for speed of computation explicitly. This is particularly
interesting for the application of medial axis approximation in
probabilistic roadmap planning, as the accuracy of medial axis
computation (and consequently also its cost) can be adjusted
to the difficulty of the motion planning problem.

The approximated medial axis computed by the proposed
method is represented by samples in close proximity to the
surface of the true medial axis. As a consequence of the
approximation algorithm, these samples are dense in narrow
spaces and sparse in open spaces. Based on this observation,
we propose a new sampling scheme for PRM methods. This
scheme is heavily biased towards placing samples in narrow
passages. The experimental results in Section V show that
this novel sampling method achieves significantly better per-
formance than previous methods. This performance gain can
be observed for the computation of the medial axis as well
as for the computation of a collision-free path, as much fewer
samples have to be taken to construct a successful roadmap.



II. RELATED WORK

The medial axis of a solid D [17] is the locus of points
inside D, which lie at the centers of all closed discs or balls
which are maximal in D and have at least two contact points
with the solid. The medial axis has found application in robot
motion planning because it captures points at a maximum
distance from obstacles and can be used as a heuristic to find
configurations of the robot that lie in free space.

Early approaches to motion planning relied on the Voronoi
diagram, which is closely related to the medial axis. The gen-
eralized Voronoi graph (GVG), which has been used in sensor-
based motion planning [4], represents a subset of the medial
axis in three dimensions. In [4], the algorithm to compute
the GVG uses local distance information obtained from the
sensors, as the robot explores its environment. Starting from
the initial position, the robot moves to the closest medial axis
point, follows the medial axis and gets off the medial axis
when it is close to the goal position.

To increase the computational efficiency of PRM planners,
hierarchical PRM (HPRM) planners [5] sample the config-
uration space adaptively. Sampling is biased towards narrow
passages by using the information contained in an initial sparse
sampling to estimate the local amount of free space. To avoid
examination of the entire configuration space required for
HPRM planners, other approaches attempt to restrict sampling
to a subset of the configuration space. The medial axis
PRM introduced in [18] and subsequently extended in [13],
approximates the distance to the closest configuration space
obstacle to obtain sample points on the medial axis of the
configuration space. The algorithms in [7], [9], [10], [14], on
the other hand, use the medial axis of the workspace. The
information captured by the medial axis can be used to locate
narrow passages [7], [14] or to attain collision-free sample
points in [9], [10]. In the remainder of the paper we will be
concerned with PRM planners that sample based on the medial
axis of the workspace, rather than the configuration space. We
refer to these methods as workspace medial axis PRM planners
(MA-PRM).

Methods of medial axis computation can broadly be divided
into three categories. The algorithms most commonly used
in the robotics literature represent the category of tracing
approaches [4], [10]. These methods start from a point on
the medial axis and perform a local exploration to determine
a nearby medial axis point. This procedure is repeated re-
cursively until all parts of the medial axis have been traced.
Computational considerations limit the applicability of these
approaches to polyhedra composed of only a few thousand
faces.

Voxel-based methods [8], [15] represent free space as vox-
els. Ragnemalm [15] assigns to each voxel the Euclidean
distance to the nearest voxel on the boundary of the free
space and computes the local directional maxima to determine
the approximated medial axis. Foskey [8] uses hardware to
compute distances while adaptively and recursively dividing
the voxels if they contain a portion of the medial axis. This

method computes a simplified medial axis [8], which is a
subset of the actual medial axis. The resulting data structure is
more stable than the true medial axis but it does not necessarily
maintain the connectivity of the medial axis, thereby limiting
its applicability.

Voronoi-based methods [1], [6] divide the free space into
Voronoi regions based on sample points on the surface of the
solid. The resulting Voronoi regions are small because a dense
sampling of the surface is required. These algorithms can be
applied to complex models, if an appropriate set of sample
points can be easily determined.

III. SAMPLING THE APPROXIMATED MEDIAL AXIS

The main idea of our algorithm [19] is to generate a small
set of partially overlapping maximal spheres to cover almost
the entire free space within the environment. These spheres
are constructed to intersect features of the medial axis. By
sampling points on the surface of the spheres and determining
their closest features in the environment, a set of points in
proximity to the medial axis can be identified. These points
serve as an approximation to the medial axis. The union of
these points comprises the approximated medial axis (aMA).
Because large open areas can be covered by large spheres, the
aMA consists of few points in wide open areas and is sampled
more densely in geometrically complex regions. The precision
with which the aMA approximates the medial axis can be
specified as a parameter of the algorithm. This allows users to
consciously trade accuracy for computational efficiency.

A. Description of the Algorithm

Each point inside the solid has at least one closest feature
on the surface of the solid. The direction vector ~v of a point
p in the solid D is the unit vector pointing from point p to
the closest feature on the surface of D. The distance δ(p)
associated with a point p in the solid D is the distance from
point p to the closest feature on the surface of D. Note that
points on the medial axis must have at least two direction
vectors.

The description of the algorithm relies on two primitive
operations. The first identifies an initial point m and associated
distance δ(m), such that the resulting sphere of radius δ(m)
around m intersects the medial axis and does not intersect the
solid. The second primitive, given a solid D, a set of points
P in the interior of D, and their direction vectors, indentifies
those points pi ∈ P which are closest to the medial axis of D

and based on these computes the points on the approximated
medial axis. These primitives will be described after we have
detailed the algorithm of computing the aMA.

Assume point m lies on the medial axis and is distance δ(m)
away from the closest obstacle. This point is determined using
aforementioned primitive. A priority queue Q is initialized to
contain the sphere described by point m and radius δ(m). The
set B of spheres describing the free space inside the solid D

is initialized to be the empty set.
The largest sphere s is extracted from Q and a set U

of uniformly distributed samples on its surface is generated.



Points in U that are contained in one of the spheres in B

are discarded. The second aforementioned primitive is used
to determine those points in U that lie closest to the medial
axis. These points p are added into the aMA and, along with
their distance δ(p), into the priority queue Q. The sphere s is
added to B. These steps are repeated until the maximum size
of the spheres in Q is smaller than a threshold, which we call
the expansion threshold Ke. We can control computation time
and the number of aMA points by changing Ke (compare with
Figure 1).

1) Find sphere s with center c inside D such that δ(c) > Ke

and the medial axis intersects s m
2) B := ∅ ; M := ∅ ; Q := {(c, δ(c))}
3) Extract sphere s = (p, δ(p)) from Q
4) While δ(p) > Ke

a) Generate n uniformly distributed samples
U = {u1, · · · , un} on the surface of s

b) Discard ui ∈ U , if ∃bj ∈ B such that ui ∈ bj

c) Using U , determine approximated medial axis points
A = {a1, · · · , ak}

d) Q := Q ∪ {(a1, δ(a1)), · · · , (ak, δ(ak))}
e) M := M ∪ A
f) B := B ∪ {(p, δ(p))}
g) Extract sphere s = (p, δ(p)) from Q

5) Connect points in M to generate the aMA

Fig. 1. The pseudo code of the algorithm. B is the set of spheres describing
the interior of the solid D. M is the set of points describing the approximated
medial axis. Q is the priority queue of spheres, ordered by radius.

Figure 2 illustrates our method in the two-dimensional case.
Assume o1 is the first element in Q. A maximal circle centered
at o1 is generated and n samples p1, p2, ..., pn are generated
on its circumference (not all samples are shown in the figure).
The point pairs (p1, p2), (p3, p4) and (p5, p6) have different
direction vectors and the midpoints of these pairs of points,
q1, q2 and q3, are considered to be on the medial axis; they are
added to the aMA and to the queue. Since q3 has the largest
radius it is expanded next and the procedure repeats.

p1

p2

p3
p4

p5

p6 o1

q1

q2

q3

Fig. 2. An illustration of the algorithm. The dashed lines represent the medial
axis of the rectangle.

We now discuss the two primitives used in the description
of the algorithm.

B. Identifying the Initial Approximated Medial Axis Point

In the description of the algorithm it was assumed that the
queue Q is initialized with a point m on the medial axis of
the solid D. We use a similar expansion algorithm as the one

described above to find m. Starting from a random point p

inside D, we generate the maximal sphere s with the center
at p. If we cannot find a medial axis point of the surface of
the sphere (how medial axis points are identified is described
in Section III-C), we sample the surface of s and determine
the sample p′ with the biggest distance δ(p′) associated with
it. The point p′ serves as the center of the next sphere. This
process is repeated until the sphere intersects the medial axis.
Since this procedure converges towards a sphere of locally
maximum radius, its center converges towards a point on the
medial axis and the surrounding sphere thus must intersect the
medial axis.

C. Identifying Approximated Medial Axis Points

Given a set of uniformly distributed sample points U on the
surface of a sphere, we apply the separation angle criteria [1],
[2], [3], [8] to determine the set containing points of the aMA.
If the direction vectors of two adjacent sample points span an
angle larger than a threshold θt, we take the samples’ midpoint
as the aMA point. In Section III-D we will bound the error of
this approximation.

If a sphere only intersects one facet of the aMA, there will
be two sets of sample points, each set with direction vectors
pointing towards different parts of the solid. These sets are
distinguished using the angle criteria. In this case we simply
insert the center of the sphere into the aMA. The samples on
the surface are superfluous. If a sphere intersects more than
two facets of the medial axis, however, these facets may meet
inside the sphere. We identify sets of adjacent samples with
distinct direction vectors, based on the angle criteria. We then
find intermediate points between those sets and add them to the
aMA. These points are called critical points; they designate an
edge or a vertex between multiple facets of the aMA. Critical
points can be used to approximate the hierarchical generalized
Voronoi graph[4].

D. Approximation Error

In this section we bound the error made by the proposed
method of approximating the medial axis of a solid. We
differentiate quantitative errors that result from the finite
sampling density of our algorithm, and qualitative errors. The
latter are a consequence of the sphere expansion algorithm to
explore the free space inside the solid.

1) Quantitative Errors: Let M be the set of approximated
medial axis points for a given solid D attained by our
algorithm. For each point pi in M , there exists a medial axis
point ti which is closest to pi. The absolute and relative errors
for the sample points M of the approximated medial axis,
relative to the true medial axis T are

• Absolute error εa: maxpi∈M{|pi − ti|}
• Relative error εr: εa

δ(ti)

The absolute error can be bounded as follows. Given a
set of uniform samples on a sphere, we define two points
as neighbors of each other if the distance between them is
smaller than the neighbor threshold dn. If the closest features
of two neighboring points p1 and p2 are different, there is a



point between them which is closest to both of those features
and thus lies on the medial axis. Since we chose the midpoint
between p1 and p2 to represent the approximated medial axis,
the maximum distance between points of the approximated
medial axis and the real medial axis cannot exceed εa = dn

2 .
This equation holds in both 2D for circles and 3D for spheres.
We define the dn

2 of the smallest sphere generated by the
algorithm described in Section III as the resolution of the
algorithm.

There is an obvious relation between the number of samples
placed on a sphere and the quality of the approximated medial
axis. Given a uniform sampling of the sphere’s surface, let dn

be the maximum distance between any sample and all samples
in a set of its closest neighbors on the sphere. For a sphere
with radius r then, the absolute error is given by εa = r dn

2 .
If the midpoint between more than two samples with different
direction vectors is selected to be part of the aMA, we use the
triangle inequality to argue that εa < r dn. These arguments
hold in 2D and 3D.

We can now specify the number of samples on a sphere
required to achieve a desired absolute or relative error. In a 2D
environment N = π

arcsin εa
r

samples are required to achieve an
absolute error εa, where r is the radius of the sphere. Suppose
q1 is a sample point on the circle. For a given relative error εr,
the number of samples needed is given by N = π

arcsin εr
when

r ≤ δ(q1) and by π
arcsin εr

δ(q1)
when r > δ(q1). The argument

in a 3D environment is similar.
2) Qualitative Errors: The aMA points we obtain only

represent a subset of the simplified medial axis [8]. The
proposed algorithm misses part of the simplified medial axis
because it does not expand spheres into the entire free space
and because it only considers a small set of points on the
surfaces of spheres. Given an absolute error εa, the algorithm
will stop if the maximum δ(p) of all sample points p is smaller
than εa. For a relative error εr, the algorithm will terminate
if the radius of all spheres is smaller than the threshold
Ke. Obviously, the algorithm can not reach a space with a
’gate’ smaller than εa or the threshold Ke. The spheres stop
spreading when they meet that ’gate’ and the free space behind
the gate will be missed, including the associated features of
the medial axis.

In the case of relative error, the sample points on large
spheres are sparser. Consequently, the size of the largest gate
which is missed depends on the amount of local free space.
This is illustrated in Figure 3: p1 and p2 are adjacent sample
points on the bigger circle and θb is the angle between the
direction vectors of p1 and p2; q1 and q2 are the adjacent
sample points on the smaller circle and θs is the angle between
the direction vectors of q1 and q2. It is obvious that |p1p2| >

|q1q2| and θb > θs. According to the separation angle criteria,
the algorithm can find the aMA point on the smaller circle but
not on the bigger circle, if θb > θt > θs.

E. Discussion

In Section II we introduced two tracing approaches which
compute the medial axis using local information [4], [10]. The

2

q q2
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Neighbor sample points on the smaller circle
Neighbor sample points on the bigger circle

Fig. 3. Illustration of the influence of relative error on missed features.

algorithm proposed here can also be regarded as a tracing
approach. It traces the medial axis by sampling on the spheres
during expansion. However, the algorithm differs importantly
from previous approaches: it explores all possible tracing
directions to pursue the near-optimal step size, which reflects
the local geometrical properties of the free space. This is the
main reason for the computational efficiency of the proposed
approach.

The most costly operation performed is the distance compu-
tation, which generally is assumed to be O(log n) in practice,
where n is the number of faces of the model. The number
of distance computations, as well as the number of aMA
points, is bounded by the number of samples on each sphere
times the number of spheres generated in our algorithm. If we
regard distance computation as a constant time operation, the
proposed algorithm is output-sensitive, i.e., its computational
cost only depends on the size of the output. This is a very
desirable property in a sense that the computational cost is
related to the geometric complexity of the solid itself and not
its model. For example, it takes the same amount of time to
compute the medial axis of a box, no matter it is composed
of 12 triangles or 12 million triangles. The algorithm has
successfully been applied to a number of benchmark models,
consisting of up to one million triangles [19].

IV. ADAPTIVE SAMPLING IN CONFIGURATION SPACE

We obtain a set of aMA points using the algorithm described
in Section III. This set reflects the local geometrical complex-
ity of the environment in its spatial density. We now describe
a probabilistic roadmap algorithm based on the approximated
medial axis (aMA-PRM). The main idea of aMA-PRM is
to sample configuration space in the proximity of the points
that represent the approximated medial axis. The resulting
sampling density is thus given by the density of the aMA
points. Consequently sampling will be biased towards narrow
passages.

The sampling technique based on the approximated medial
axis is shown in Figure 4. It generates k random configurations
in the proximity of each aMA point. Here, proximity is
defined in R

3. These configurations are subsequently modified
iteratively to improve general proximity to the medial axis,
using the method described in [10]. Several so-called handle
points H on the robot are chosen in order to capture the
main spatial features of the robot. The closest aMA points to



these handle points are identified and a potential field-based
method is applied to minimize the distance between the handle
points and their corresponding aMA points. This increases the
probability that the configuration lies in free space.

For each aMA point mi in M repeat k times
1) generate random configuration qi in proximity to mi

2) for each hi ∈ H identify the closest mj ∈ M
3) obtain q′

i by iteratively reducing the distances between all hi

and the corresponding mj ∈ M
4) if it lies in free space, add q′

i to the roadmap R

Fig. 4. The pseudo code for the sampling algorithm used in the aMA-PRM
planner. M represents the set of aMA points; H is the set of handle point on
the robot; R denotes the probabilistic roadmap built by the planner.

The proposed sampling method differs from previous ap-
proaches [10] in two important aspects. By using the approxi-
mated medial axis presented in this paper, the sampling density
is varied based on the geometric properties of the workspace,
with high densities in narrow passages. This is illustrated in
Figure 5 for the environment shown in Figure 6. The figure
shows the medial axis points generated by a regular tracing
approach (left) and by the proposed sphere expansion (right).
Furthermore, the sampling methods attempts to sample k times
for each point on the aMA, providing a convenient way of
varying the adaptive sampling density in a global fashion. By
placing fewer samples, the size of the roadmap can be reduced
significantly and computational efficiency is increased.

Fig. 5. The medial axis points obtained by the tracing method [10] (left)
and the proposed sphere expansion method (right).

V. EXPERIMENTAL RESULTS

The experiments reported in Table I were performed on a
dual-PentiumIII PC with 1024 MB SRAM and a 32MB DDR
NVIDIA GeForce2 GTS graphics card. The proposed planner
was developed based on the MSL [12]. Our experiments are
restricted to rigid body robots and were averaged over ten
independent runs. The minimum number of samples for the
various planners as well as the parameter k for the aMA-
PRM approach which were required to solve a given problem
were determined by incrementally building and testing the
roadmaps. If a planning problem could not be solved, the
values given in Table I describe the expended resources at
the point at which the experiment was aborted.

The simulation environment (see Figure 6) is a box which
is divided into two parts by a wall with a square opening,
representing the only path from one side of the box to the
other. Figure 7 shows snapshots of an L-shaped robot passing
through the hole. We compare the results for planning a path
for two L-shaped robots of different sizes from one side of the
box to the other using four PRM variants: the basic PRM [11],
the PRM using sampling based on the medial axis (MA-PRM)
computed by a regular tracing approach [10], a variant of the
former relying on the aMA instead (MA-PRM with sphere
expansion), and finally the proposed aMA-PRM using sphere
expansion to compute the aMA and the sampling method
described in Section IV.

The experimental results are summarized in Table I. We
compare MA-PRM with the tracing and sphere expansion for
medial axis computation to show that no penalty is incurred
for using an approximation to the medial axis. Surprisingly,
we observe that for the same MA-PRM method a speed-up
results from using the aMA rather than the MA. This can be
explained by the fact that due to the sparser sampling density
in open spaces, more randomly generated configurations will
be iteratively modified to lie closer to medial axis points in the
narrow passage, thus resulting in a higher sampling density
in narrow passages. Due to the long computation time for
the medial axis, however, the MA-PRM planner with tracing
is outperformed by basic PRM for the easier scenario with
the small robot. Note that the clearance between the large
robot and the opening in the wall is too small for any part
of the robot to be able to rotate freely while traversing the
opening. For this very difficult scenario only the aMA-PRM
method was able to compute a path within reasonable amounts
of computation.

From the experimental results it can be seen that the aMA-
PRM planner proposed in this paper outperforms both the
regular PRM and the MA-PRM [10] by orders of magnitude
for many of the shown metrics and results in a substantial
decrease in overall computation time. In particular, as a result
of the biased sampling, the size of a successful roadmap is
reduced substantially.

Fig. 6. The environment is a box (120×100×100, not shown in the figure),
divided into two equal parts by a wall with a hole (4× 20× 20). The robots
are composed of two blocks (small robot: 30×4×4, large robot: 34×8×8).



Robot Medial Axis Computation Path Planning Total
Method Vertices tm(s) PRM Method Vertices Edges Checks tp(s) Solved t(s)

N/A N/A N/A Basic 2,375 72,008 4,469,599 861 Yes 861
Small Tracing 1,722 808 MA 1,583 43,356 2,954,210 476 Yes 1284

Sphere 832 33 MA 1,328 31,612 2,160,183 351 Yes 384
Expansion aMA (k=7) 289 1,203 91,793 65 Yes 98

N/A N/A N/A Basic 12,931 446,068 300,804,571 13,146 No N/A
Large Tracing 1,722 808 MA 14,867 519,246 35,539,629 15,076 No N/A

Sphere 832 33 MA 9,663 323,882 22,251,921 10,145 No N/A
Expansion aMA (k=36) 640 8,112 589,995 340 Yes 373

TABLE I. Comparison of different PRM methods generating the motion of an L-shaped robots through a narrow passage. The first set of columns reports
results on the computation of the medial axis, the second on path planning, and the last column reports total planning time. For the medial axis, the method of
computation, the number of vertices in the resulting medial axis representation, and the time tm to compute the medial axis are reported. For path planning,
the specific PRM method, the number of vertices (milestones) and edges of the resulting roadmap, the total number of collision checks, the time for path
planning, and whether or not the problem was solved are given. The total time t = tm + tp specifies the overall execution time. All times are averaged over
ten independent runs and are given in seconds.

Fig. 7. Snapshots of an L-shaped robot passing through the hole.

VI. CONCLUSION

Motivated by the goal of biasing sampling in the PRM
framework towards narrow passages, a novel algorithm for
computing an approximation of the medial axis was presented.
This algorithm distinguishes itself from previous work by
its computational efficiency. Experiments show that simply
using the approximated medial axis instead of a evenly dis-
cretized medial axis to bias sampling based on a previous
PRM sampling technique accelerates planning. This is caused
by the fact that the proposed medial axis approximation is
represented by sparse samples in open areas and by dense
samples in narrow passages. This property is exploited by a
novel sampling strategy based on the approximated medial axis
presented in this paper. Applying this approach to sampling
yields an additional, very significant increase in computational
efficiency, as demonstrated by experimental results.
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