
Exploiting Redundancy to Implement

Multi-Objective Behavior

Yuandong Yang Oliver Brock Roderic A. Grupen

Laboratory for Perceptual Robotics

Department of Computer Science

University of Massachusetts Amherst

Email: {yuandong, oli, grupen}@cs.umass.edu

Abstract

Teams of robots can be redundant with respect to a

given task. This redundancy can be exploited to pur-

sue additional objectives during the execution of the

task. In this paper, we describe a control-based method

to exploit such redundancy for the execution of addi-

tional behavior, leading to the improvement of over-

all performance. The control-based method provides

a suitable mechanism for combining controllers with

different objectives. The mechanism ensures that the

subordinate controllers do not interfere with the supe-

rior controllers. Thus it allows to build controllers ex-

hibiting complex behavior from simple primitives, while

maintaining their provable performance characteris-

tics. The effectiveness of the framework is demon-

strated by experiments with a multi-robot exploration

task.

1 Introduction

Distributed control methods for multi-robot teams
have been an active area of research. Individual mem-
bers of a team are controlled independently in such
a way that a desired behavior of the group emerges.
Robots observe the world, abstract, and act indepen-
dently and concurrently. The main objective and dif-
ficulty in designing distributed controllers is the coor-
dination of team members.

Various methods have been introduced for dis-
tributed control tasks. We distinguish two approaches:
top-down and bottom-up methods. In top-down meth-
ods, the controller is recursively divided into less com-
plex units. The division continues until all units can
be physically implemented. The resulting controller is
generally well suited to solve the given task, but might
fail to generalize easily to a different task.

Bottom-up methods, on the other hand, build small
modules first. Higher-level behavior is achieved by

combining lower-level modules. Once the lower-level
modules are built, they can easily be combined into
different controllers addressing varying task require-
ments. Consequently, bottom-up methods can be con-
sidered more versatile and flexible compared to top-
down methods.

Within the framework of bottom-up methods, the
construction process for controllers requires two steps:
the design of versatile modules and their combination
into controllers. The resulting modules should be ro-
bust, while methods to combine them should maintain
their desirable properties. In this paper, we introduce
a control-based framework to address these issues.

Our framework allows to specify a “universe” of
controllers by combining objective functions represent-
ing a desired behavior, state estimators to perceive in-
formation about the state of the world, and effectors

to modify the state of the world. Each combination of
instantiations from these categories can be viewed as
a control option. Desired behavior is achieved and its
performance can be guaranteed by employing closed-
loop disturbance rejection.

The control-based framework presented here also
specifies how controllers are combined. The controllers
are ranked based on their importance for the overall
behavior. Actions of subordinate controllers are pro-
jected into the nullspace of superior controllers. This
mechanism ensures that the performance of the su-
perior controller remains unaffected, while performing
additional behavior whenever possible.

We demonstrate the effectiveness of this control-
based method for multi-objective robot control by ap-
plying it to the task of exploring an unknown envi-
ronment with a team of robots. The experiments pre-
sented in Section 4 demonstrate how the redundancy of
the team can be exploited to add secondary objectives,
which significantly improve the overall performance of
the team.

2 Related Work

We will restrict our discussion of previous work to
those methods classified as bottom-up, as described
above. The behavior-based control method [1][6] is one
of the successful ones. It replaces behaviors couched in
expensive representations with local control decisions
and sensor information. The subsumption architec-
ture arbitrates actions using inhibition and suppres-
sion mechanism between behavioral modules.

Several people have contributed to the area of
behavior-based methods. Maes [5] developed a
method by which robots learn how to combine pre-
designed basic behaviors. Hoff [3] designed algorithms
to learn both the basic behaviors with sub-goals and
how to combine them to achieve more complex behav-
iors. Mataric [7] gave an impressive demonstration of
behavior-based control on real robots. Two behaviors
can be combined into new higher-level behaviors by be-
havior combination operators. Reinforcement learning
is applied to let robots learn how to construct higher
level behaviors automatically.

Behavior-based methods have their advantages, but
we want to argue that they have some problems. The
simple combination of two or more basic behaviors
cannot ensure the execution of either behavior. Rein-
forcement learning can be employed to identify func-
tioning combinations, but the controllers it chooses are
unlikely to be generalizable and will probably fail if the
environment or other conditions vary.

Huber and Grupen [4] introduced the idea of
control-based methods. They can be still classified
as behavior-based methods, but it is more formalized.
Huber successfully applied the method to learning to
control legged-robots [4]. The robots learn how to walk
without falling, which is guaranteed by the virtue of
discrete event specifications.

In this paper, we extend this technique following the
work of Sweeney [9] that treats multiple mobile robots
with multiple concurrent objectives; namely searching
a multi-room floor plan while maintaining in a con-
nected communication network.

3 Exploiting Redundancy using

Control-Based Methods

3.1 Specifying Controllers

A set of controllers C can be described using a vocab-
ulary of objectives Φ, sensors S, and effectors E:

C = Φ × S × E

A specific controller c then is given by the tuple (φ, s, e)
with φ ∈ Φ, s ∈ S, and e ∈ E. The objective func-
tion φ is measured using the sensor s and continuous
closed-loop control is employed to optimize φ using
the effector e. Closed-loop control ensures robust per-
formance by continuous disturbance rejections. Note
that this framework is very general and that compu-
tational resources, sensors, and effectors do not have
to reside in physical proximity. Our notation for such
a controller, also called control primitive, is given by

φ|se, with φ ∈ Φ, s ∈ S, e ∈ E.

Applying this formalism to the domain of teams of
mobile robots we will use the notation φ|si throughout
the remainder of this paper. The objective function φ

is represented by an artificial potential field. Robot i

uses a sensor s to descend the gradient of φ.

3.2 Combining controllers

Control primitives as described above perform single
objectives, represented by φ in a robust manner. Our
goal is to combine many such primitives into a com-
plex controller without sacrificing robustness. We de-
termine a ranking of control primitives in such a way
that the behavior of a subordinate controller should
never interfere with a superior controller. This can be
accomplished by projecting the actions resulting of a
subordinate controller into the nullspace of the supe-
rior controller.

If the task of a robot is specified by the vector ẋ

and the robot is redundant with respect to that task,
the robot can perform a set of actions not affecting
task performance. These actions are said to be in the
nullspace of the Jacobian matrix J , associated with
the task.

The control of the robot is composed from two com-
ponents: one representing task behavior, J#ẋ, and
a second one representing additional, subordinate be-
havior K. The subordinate behavior is projected into
the nullspace (I−JJ#) of J to not affect the execution
of the superior task:

θ̇ = J#ẋ + (I − JJ#)K, (1)

where J# designates the Moore-Penrose inverse of J , I

is the identity matrix, K = δp
δx

represents the gradient
of the potential function p of a subordinate controller,
and (I − JJ#) is the nullspace projection of J .

We use the notation φ1 / φ2, or φ1 “subject to”
φ1, to express the nullspace relationship between two
primitives φ1 and φ2. Primitive φ1 is subordinate and
must be performed in the nullspace of superior prim-
itive φ2. Consequently, actions resulting from φ1 will

only be performed if they do not affect the execution
to φ2.

The approach of combining control primitives per-
mits to safely pursue multiple objectives as long as
subordinate controllers do not affect the behavior of
superior ones. The control primitives are constructed
from sets of objective functions, sensors, and effectors;
by employing closed-loop disturbance rejection the ro-
bustness of the primitive as well as the robustness of
the combined controller can be guaranteed. We can
continue this process of combining controllers, until
the resulting nullspace does not suffice any more to
perform a certain desired behavior.

3.3 Exploiting Redundancy

We will now apply the framework presented in the pre-
vious section to teams of mobile robots. In such teams
each member can be treated as a sensor-effector pair –
it has the ability to sense and change the environment.
If the team resources exceed the requirement of the
task, we say that the team exhibits redundancy with
respect to that task. For example, in a single-objective
exploration task, the robot always follows the steepest
descent of the potential function representing the task
in order to minimize the exploration time. A team of
robots, however, will be redundant with respect to the
exploration task.

In the remainder of the paper we will demonstrate
how we use the framework introduced in this section
to exploit the redundancy encountered in robot teams.
We present three different concurrent controllers con-
sisting of multiple control primitives. Each controller
solves the exploration task. The controllers differ in
additional, subordinate primitives, relying on redun-
dancy to improve the overall performance during the
exploration task. Exploration is performed in a multi-
room floor plan represented by a grid, measuring 32
by 32 cells. The task of the robots is to explore all the
cells with infrared sensors while maintaining a line-of-
sight constraint. This constraint requires the robots
to maintain an unobstructed line of sight and to ex-
ceed a given distance from each other. This constraint
is motivated by communication requirements between
robots using radio signals with limited range.

The robots need to plan its path to all unexplored
regions while avoiding hitting any obstacles. We use
harmonic functions[2, 8] to generate the motion of the
robots. Harmonic functions have desirable properties
in dynamic environments. All the obstacle cells are
assigned a potential value of 1 and the goal cell is as-
signed a potential value of 0. We use dynamic pro-
gramming to compute the potentials.

The following three controllers were used to demon-

strate that redundancy can be exploited to increase
performance. Each of them combines at least two be-
haviors for an exploration task performed by a team
of two robots.

(A) Line-of-sight exploration controller: The
line-of-sight exploration controller is implemented in
Sweeney’s work [9]. The exploration of the robots
is frontier-based [10]: the robots are always heading
to the biggest boundary between free space and un-
explored space using artificial potentials and gradient
descent. Equation 2 describes the line-of-sight explo-
ration controller in the framework introduced above:

Φ|s{L,F} = {φ|sL / φ|LOSL

F }, (2)

where s refers to the infrared sensors of the robots,
LOS stands for line of sight, and L,F refer to the
leader and follower, respectively. The subordinate ex-
ploration primitive φ|sL of the leader is performed in
the nullspace of (or “subject to”) the primary line-of-
sight control primitive φ|LOSL

F . Any motions resulting
from the exploration primitive will be projected into
the nullspace of the line-of-sight primitive. Thus, the
line-of-sight constraint will be always maintained.

The additional line-of-sight constraint might in-
crease exploration time with respect to a single-robot
exploration, because the leader has to ensure that the
follower is able to maintain visibility. This controller
will serve as our reference controller. In what follows
we propose modifications to this controller with the
goal of speeding up the exploration process. Improve-
ment will be measured relative to the line-of-sight ex-
ploration controller, or reference controller.

(B) Line-of-sight exploration with collaborative
search behavior: In this modification of the refer-
ence controller, the goal of the follower to perform
its own exploration by maintaining the line-of-sight
constraint to the leader. The line-of-sight constraint
bounds the distance between the leader and the fol-
lower from above. The exploration primitive for the
follower also imposes a lower bound. The follower
is moving towards an unexplored region within those
bounds, allowing it to assist the leader in exploring
the maze while still maintaining the line-of-sight con-
straint. This also forces the motion of the follower to
be mapped into the nullspace of the line-of-sight con-
troller.

Equation 3 describes the line-of-sight controller
with collaborative search behavior using the notation
introduced earlier. A third control primitive φ|sF is
added (see Equation 2). The collaborative search
primitive is subject to the follower performing the line-
of-sight control primitive. The motion of the follower

will be projected into the nullspace of the line-of-sight
primitive.

Φ|s{L,F} = {φ|sL / φ|LOSL

F . φ|sF } (3)

The controller in the equation 3 can be rewrit-
ten as separate controllers for the leader and follower:
φ|sL / φ|LOSL

F and φ|LOSL

F . φ|sF . The first part can be
interpreted as the leader exploring the environment,
while “pulling” the follower along. The second part
represents the follower “pushing” the leader ahead by
proceeding into unexplored regions in which the line-
of-sight constraint is maintained. The follower’s explo-
rative motion is mapped into the nullspace of φ|LOSL

F ,
the line-of-sight controller, preventing any motions vi-
olating the primary LOS constraint.

In Figure 1 the traces of the two robots perform-
ing exploration using this controller are shown. In the
middle of the figure, we can see that the follower moves
to the right of the leader, assisting in the exploration
of an unexplored region. Such behavior reduces explo-
ration time.

Figure 1: The traces of leader/follower with collabo-
rative search

(C) Line-of-sight exploration with collaborative
search and role-change behavior: Based on con-
troller B, we try to further improve the performance
by adding an additional behavior. We employ the abil-
ity of the leader and the follower to change roles dur-
ing the exploration process. A role change can save
exploration time when a change in direction occurs.
Consider the example of exploring a room. At first,
the follower follows the leader into that room. After
the leader has completed the exploration, both robots
need to exit the room. The leader’s motion will force

the follower out of the room. If the robots switch
roles instead, however, the leader does not have to
travel the distance to pass the follower and the explo-
ration can resume faster. A role-change is always in
the nullspace of the line-of-sight controller because it
does not change the distance between the leader and
follower.

The decision to change roles is based on the har-
monic potential. We notice that the paths of the
robots are mostly determined by obstacles in proxim-
ity. Once these have been detected, the corresponding
potential surface for the leader and the follower will
looks similar. As a result, the paths chosen by the two
robots will be almost identical. A monitor is added to
the line-of-sight exploration controller, monitoring if
the leader and the follower are on similar paths and if
the follower is ahead of the leader with respect to the
direction of motion. If this situation occurs for longer
than a predetermined interval, the leader and follower
change roles. Note that the role-change always is in
the nullspace of the line-of-sight behavior.

4 Experimental Results

We applied the three controllers introduced in the pre-
vious section to exploration tasks in 1920 randomly
generated mazes. The result is shown in Table 1. The
exploration time is measured in terms control cycles of
the simulator required to complete the exploration. In
each control cycle, the robots communicate with each
other and execute an action. Figure 2 shows the traces
of the robots controlled by the three controllers in an
identical maze. For the line-of-sight controller, an av-
erage 870 of control cycles were needed to complete
the exploration. Because the follower is fast enough
to follow the leader, the exploration time with line-of-
sight constraint is only a marginally longer than the
exploration with a single robot.

We evaluate the three controllers presented here by
comparison relative to the reference controller. The
comparison is shown in Table 1.

The line-of-sight controller with collaborative
search behavior exhibits an average improvement of
30% compared to the reference controller. This im-
provement is a result of the follower providing addi-
tional information about obstacles, effectively increas-
ing the sensing range of the leader, and thus assist-
ing with the exploration within line-of-sight distance.
The standard deviation in the improvement can be
explained by the fact that the environment initially
is completely unknown. A short-term gain does not
necessarily brings a long-term gain. Exploration deci-
sions made locally might not be optimal globally. But

LOS LOS with CS LOS with both CS and RC
average exploration control cycles 857.2 578.2 565.9

standard deviation 209.2 115.7 112.8
average improvement(percent) N/A 30.0 31.5
standard deviation(percent) N/A 17.9 17.4

Table 1: Comparison of three controllers in 1920 simulated exploration tasks. LOS stands for line-of-sight explo-
ration; RC stands for role-change; CS stands for collaborative search.

1
1

sensor range 3
4

sensor range 1
2

sensor range

infrared range in grid cells 8 6 4
average exploration control cycles 578.2 764.9 1204.9

standard deviation 115.7 120.0 187.1
average improvement(percent) 30.0 22.1 11.8
standard deviation(percent) 17.9 15.6 16.6

Table 2: Comparison of three line-of-sight controllers with collaborative search behavior, using differant infrared
sensor ranges.

even within the range of the standard deviation there
is considerable improvement compared to the reference
controller.

The controller with collaborative search and role-
change behavior resulted in an average improvement of
31.5%. This improvement is not significant relative to
the controller with collaborative behavior. The small
magnitude of this improvement can be explained as fol-
lows: Each time leader and follower change roles, they
only save the exploration distance between the leader
and the follower. These distances are small compared
to the total required travel for exploration. Conse-
quently, the exploration time gained by role-switching
is marginal compared to the overall exploration time.

The degree to which the proposed controllers are
able to reduce the overall exploration time of a given
environment is dependent upon the sensing capabili-
ties of the robots. To demonstrate this we performed
experiments with different sensing ranges for the in-
frared sensors. Table 2 compares the performance of
the line-of-sight exploration controller with collabora-
tive for various sensor ranges. If the range is shortened
to 3

4
of the range for the experiments reported in Ta-

ble 1, we only observe an average improvement of 22%
with respect to the reference controller with the same
sensor range. Further reducing the range to 1

2
of the

original one, reduces the average improvement to only
11%. This is due to the fact that in order to maintain
the line-of-sight constraint, leader and follower have to
be able to perceive each other. Reducing the range of
the infrared sensors also reduces the distance they can
be apart without violating the line-of-sight constraint.

This limits the capacity of the follower to perform in-
dependent exploration, thus deteriorating the overall
performance.

These results presented in this section demonstrate
that by exploiting the redundancy of teams of robot
with respect to a given task using a control-based
nullspace scheme, we can significantly improve the
overall performance. Note that while the experiments
described above are performed with only two collab-
orating robots, the general framework extends to an
arbitrary number of additional robots. These could
either have to maintain a line-of-sight constraint with
the leader or adopt other followers as their leaders.

5 Conclusion

In this paper, we presented a formal framework to
combine control-based methods to exploit the redun-
dancy of a team of robots with respect to a given task.
The framework allows the incremental integration of
control primitives. By performing each additional be-
havior in the nullspace of the original controller, we can
guarantee that the added behavior will not affect the
performance of existing controllers. As a consequence,
added controllers can be used to implement more com-
plex behavior and to improve the overall performance
in a robust manner.

We presented experiments, demonstrating the ef-
fectiveness of the proposed approach. The experi-
ments apply the framework to the exemplary appli-
cation of team-based exploration of unknown environ-
ments. Augmenting a reference controller for this task

with additional behaviors, we were able to show signif-
icant improvements in exploration speed. The experi-
ments conclusively show that our framework is capable
of combining various behaviors in a prioritized man-
ner to result in more sophisticated and advantageous
overall behavior of the team.

Acknowledgments

The authors would like to thank John Sweeney for
their helpful insights and discussion in preparing this
paper. Work on this paper has been supported in part
by MARS/SDR, NSF CDA-9703217, DARPA/ITO
DABT63-99-1-0022, and DABT63-99-1-0004.

References

[1] Rodney A. Brooks. Intelligence without representa-
tion. Artificial Intelligence Journal, 47:139–159, 1991.

[2] C. Connolly and R. Grupen. Harmonic control. In
Proceedings of the IEEE International Symposium on
Intelligent Control, pages 503–506, Glasgow, Scot-
land, Aug. 1992.

[3] J. Hoff and G. Bekey. An architecture for behavior
coordination learning. In IEEE International Con-
ference on Neural Networks, pages 2375–2380, Perth,
Australia, Nov 1995.

[4] M. Huber and R. A. Grupen. A control structure
for learning locomotion gaits. In Proceedings of Sev-
enth International Symposium on Robotic and Appli-
cations, Anchorage, AK, May 1998. TSI Press.

[5] P. Maes and R. A. Brooks. Learning to coordinate
behaviors. In National Conference on Artificial Intel-
ligence, pages 796–802, 1990.

[6] M. Mataric. Behavior-based control: Main proper-
ties and implications. In Proceedings of the IEEE
International Conference on Robotics and Autonoma-
tion, Workshop on Architectures for Intelligent Con-
trol Systems, pages 46–54, 1992.

[7] M. J. Mataric. Interaction and intelligent behavior.
Technical Report AITR-1495, MIT, 1994.

[8] E. Prestes, E. Silva, P. M. Engel, M. Trevisan, and
M.A.P. Idiart. Exploration method using harmonic
functions. Journal of Neurophysiology, 40:25–42, July
2002.

[9] J. Sweeney, TJ Brunette, Y. Yang, and R. Grupen.
Coordinated teams of reactive mobile platforms. In
Proceedings of the IEEE International Conference on
Robotics and Automation, pages 299–304, 2002.

[10] B. Yamauchi. A frontier based approach for au-
tonomous exploration. In Proceedings of the IEEE In-
ternational Symposium on Computational Intelligence
in Robotics and Automation, pages 146–151, Mon-
terey, CA, July 1997.

Follower Leader Start point

Figure 2: The traces of leader and follower controlled
by the three controllers in the same maze: a) line-of-
sight exploration, 720 control cycles; b) line-of-sight
exploration with collaborative search, 531 control cy-
cles; c) line-of-sight exploration with both collabora-
tive search and role-change, 492 control cycles and 3
role-changes.

