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Abstract

Motion planning for robots with many degrees of freedom requires the exploration of an exponen-
tially large configuration space. Single-query motion planners restrict exploration to regions of configu-
ration space determined to be relevant to a particular planning query. The heuristics employed by existing
single-query planners to estimate the relevance of a region, however, remain unchanged throughout the
planning process. An incorrect estimate by the heuristic for a configuration space region will only be
corrected by explicit exploration. As a result, unnecessary exploration is performed. In this paper we
propose an alternative approach. We observe that every incremental sample improves the planner’s un-
derstanding of configuration space. This improved understanding can be exploited to inform the single-
query heuristic of a motion planner. We formalize the improvement in understanding by employing the
notion of entropy from information theory and derive a principled method of configuration space ex-
ploration in the single-query setting. Experiments show that the proposed single-query entropy-guided
motion planner outperforms existing single-query techniques.

1 Introduction

The general motion planning problem has been shown to be PSPACE-complete [5, 13]. In spite of this
computational complexity, sampling-based motion planners are able to solve many practical problems in
high-dimensional configuration spaces [9]. But even these planners cannot avoid the exploration of a con-
figuration space of exponential size. During exploration, amodel of free configuration space is constructed.
In sampling-based motion planners this model is a graph, called roadmap, that captures free space connec-
tivity. Once such a roadmap has been computed for the entire configuration space, any planning query can
be answered efficiently.

To answer only a single motion planning query, the complete exploration of configuration space is not
necessary. It suffices to build a model of free configuration space in regions relevant to the given query. This
provides the motivation for single-query motion planners.These planners construct a partial model of free
configuration space by biasing exploration toward regions determined to be relevant to the query. A number
of such single-query planners have been proposed in the literature. They differ in their method of estimating
the relevance of a particular region of configuration space (see Section 2).

A common feature of all heuristics for single-query motion planners presented in the literature is that
they ignore the information obtained during the planning process. The estimated relevance of a region
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provided by these heuristics is only altered by its explicitexamination. This is because existing heuristics
estimate relevance of regions assuming they are free. In existing planners, this assumption can only be
disproven by explicitly invoking a collision checker. In reality, the information captured by nearby samples
taken during the motion planning process provides an indication of whether a particular region is free or not.
This information currently is ignored by existing planners.

We present a single-query motion planner that estimates theutility of configuration space regions based
on their relevance to a particular planning queryand the probability that they are collision free. Both factors
are determined based on information obtained incrementally throughout the planning process. Extending
our previous work on entropy-guided motion planning [4], weexploit the notion of entropy reduction to
derive an information theoretic heuristic for single-query motion planning. We first define a probability dis-
tribution over paths in the configuration space. This distribution is designed to have high entropy when little
information about the single-query is available and minimum entropy when a solution has been determined.
Configuration space exploration is guided by the heuristic of maximum entropy reduction, or equivalently,
maximum information gain. This heuristic uses all available information to guide the planner’s exploration.
Each exploration step results in maximal progress toward discovering a solution path, given the available
information at the time.

Empirical evidence shows that the proposed single-query entropy-guided motion planner outperforms
other approaches to sampling-based single-query motion planning.

2 Related Work

The first probabilistic approach to single-query path planning was the LazyPRM algorithm [2]. LazyPRM
initially samples the configuration space without performing collision checks. Samples are assumed to
be free and are connected to their nearest neighbors by edgeswithout verifying their validity. LazyPRM
searches the resulting roadmap using the A* algorithm, which biases search toward the region of space
surrounding a straight line path between the start and goal state. This heuristic remains unchanged, irre-
spective of acquired information indicating, for example,that a region is obstructed. When a candidate
path in the roadmap is found, it is validated by testing all nodes and then all edges. If obstructed nodes or
edges are found, they are removed from the graph and A* path search begins again. A multi-grid variant
of LazyPRM [1] discretizes the range of motion for each degree of freedom to simplify the configuration
space. The granularity of the discretization is adapted until the motion planner can find a path.

FuzzyPRM [12], unlike LazyPRM, does not delay the examination of nodes in its graph, but does delay
evaluation of edges. FuzzyPRM maintains an estimated probability value for each edge based on a dis-
tribution over the unchecked portion of the path. For a particular edge segment, this estimate exclusively
depends on the length of the edge. Consequently, is remains constant throughout the planning process and
is not updated based on information obtained by sampling. Candidate paths through configuration space are
found using Dijkstra’s algorithm. When a path is found, it isverified by examining edges in the order from
longest (judged by FuzzyPRM to be least likely to be free of collision) to shortest.

Similar to the multi-grid extensions of LazyPRM is the single-query quasi-random grid approach (LazyQRM) [8].
Quasi-random grids establish a lattice of configurations spanning the configuration space. Since the struc-
ture of the grid is implicitly defined, the costly pre-sampling and graph construction required by LazyPRM
and FuzzyPRM can be avoided. The A* algorithm, using Euclidean distance to the goal as its heuristic, is
used for search within the grid. This heuristic is identicalto the one employed by LazyPRM.

An adaptive approach to single-query path planning is presented in [15]. It features a meta-planner that
incrementally plans between start and goal. At each planning attempt, the “best” algorithm, based upon the
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number of obstructed configurations and the algorithm’s previous performance, is selected. When planning
fails, any progress made by the planner is grafted onto the start and goal tree. This single-query motion
planning techniques effectively combines a variety of planners with the goal of exploiting their strengths
and weaknesses in configuration space regions with specific characteristics.

Rapidly-growing random trees (RRTs) [7] quickly explore the area between start and goal configurations
by diffusing random trees of short edges through configuration space. The employed heuristic is termed the
Voronoi bias [10]; it guides sampling toward unexplored regions of configuration space. Again, this planner
does not take into account information obtained during the planning process to alter this heuristic, i.e., the
heuristic does not differentiate between different open regions based on whether access to them is blocked
or not. Single-query planning with expansive spaces [6] is similar to RRT planners; they also use diffusion
from start and goal configurations to find a solution to the planning problem.

Others have suggested the use of information theory for motion planning. Yu and Gupta [16] use re-
duction in entropy to guide the visual exploration of workspace for an eye-in-hand system. The notion of
entropy is used to determine placements for the camera that are expected to provide maximum information
about the workspace. By iterating the process of placing thecamera based on this criteria, visual exploration
can proceed efficiently. In our previous work, the notions ofentropy has been used to successfully guide
sampling in the construction of multi-query probabilisticroadmaps [3].

3 Single-Query Entropy-Guided
Motion Planning

We propose a novel single-query motion planning approach based on an information theoretic framework.
The configuration space exploration performed by this planner is influenced bya) the relevance of a con-
figuration space region for finding a solution to the given planning problem, andb) the probability that this
region is free of collision and thus can be part of a potentialsolution.

The relevance of a region is estimated based on whether or nota potential solution path traverses it.
A potential solution path is a path that, given the current information about the configuration space, is not
known to be obstructed. The path is found based on the currentrepresentation of configuration space. Since
this representation is updated with each sample, all information available at a particular point in time is taken
into account. This is an important distinction to previous single-query motion planners.

In addition to the binary criterion for potential solution paths (a path can either be shown to be invalid,
or is assumed to be valid), we propose to estimate the probability of a particular solution path to be valid
based on the information available in the configuration space representation. This information can be used
to guide configuration space exploration toward regions most likely to contain a solution to the planning
problem.

These two criteria are used in an information theoretic exploration scheme based on entropy reduction
(or information gain). The derivation of information gain in this setting will be given in Section 3.1. In
Section 3.3 we show how information gain can be used to guide exploration of configuration space in a
concrete implementation.

3.1 Information Gain in Single-Query Motion Planning

In this section we discuss the information theoretic background for the single-query motion planning method
presented here. Information gain [14] is a formal representation of the reduction in uncertainty that results
from some additional knowledge. It was originally proposedto formally model information transfer through
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electronic signals. In the case of sampling-based motion planning, additional knowledge is the observation
that a configuration is obstructed or free. In prior work, we defined information gain for multi-query motion
planning [3]. For single-query motion planning we must define expected information gain for the task of
discovering a particular path.

Entropy is the measure of uncertainty of a probability distribution P over a domainD:

H(D) = −
∑

d∈D

P (d) log P (d)

Information gain is the reduction in the entropy of a distribution as a result of obtaining some informationi:

IG(D|i) = H(D) − H(D|i)

A distribution that has low entropy when a path between startand goal has been found and high entropy
otherwise allows information gain to be used to direct exploration. At each step, the motion planner operates
to maximize information gain (and thus minimize entropy) ofthis distribution. Because of the design of the
distribution, this results in maximal progress toward a solution to the specified path query.

For single-query motion planning we use a distribution overa set of possible pathsA. Each member of
this seta ∈ A represents a path connecting the start and goal configurations. The probability assigned to
each patha in this distribution is the probability that it will be the successful path returned by the motion
planner. This probability is the combination of the probability that the path is free (Pf (a)) and the probability
that this path will be examined by the motion planner prior toany other path which is free (Ps(a)). Since
these probabilities are independent, the joint probability that the path is free and examined prior to any other
free path is given byPp(a) = Ps(a) · Pf (a). The probability,Ps(a) is difficult to calculate exactly but it is
proportional to the length of the path since the planner usesA* which searches for shortest paths.

Pf (a) can be calculated as the product of the probability that it isconstituent verticesV (a) and edges
E(a) are free:

Pf (a) =





∏

v∈V (a)

Pf (v)









∏

e∈E(a)

Pf (e)





Edge and vertex probabilities are either the result of direct observation in the collision checker or estimated
by the approximate model (Section 3.2). The entropy of this distribution is given by:

H(D) = −
∑

a∈A

Pp(a) log Pp(a)

Every exploration of configuration space results in obtaining of some new informationi which pertains to
the feasibility of the patha.

For each patha in A, there are two possible outcomes of learningi: a may be more likely to be free, or
a may now be known to be obstructed. In each case, the information gain is given by the difference between
the prior and current entropy. Most of the probabilities forthe paths of the distribution will remain the same,
only those paths that contain a vertex or edge related toi will be affected. LetA′ be this set of all paths inA
that contain paths affected byi .

First, consider the case wherei results from an observation that something is free. In this case, the
probability of each path thati pertains to increases slightly:

IG(D|i) = H(D) − H(D|i)
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= −
∑

a∈A′

Pp(a) log Pp(a) −−
∑

a∈A′

Pp(a|i) log Pp(a|i)

When i results from an obstructed observation patha ∈ A′ that i pertains to, the probability of the path
becomes zero. The information gained is:

IG(D|i) = H(D) − H(D|i)

= −
∑

a∈A′

Pp(a) log Pp(a) −−
∑

a∈A′

Pp(a|i) log Pp(a|i)

= −
∑

a∈A′

Pp(a) log Pp(a)

Expected information gain is given by:

< IG(D|i) > = −
∑

a∈A′

Pp(a) log Pp(a) +

P (i = free)
∑

a∈A′

Pp(a|i) log Pp(a|i)

Observing thatlog Pp(a|i) ≤ 0 and thatPp(a|i) ≥ 0 for any patha, we can see that for information
pertaining to a set of pathsA′, the information gain from discovering an obstruction is greater than or
equal to information gain for observing free space. Intuitively this can be seen by noting that observing a
configuration is obstructed immediately eliminates the entire path, while observing a configuration is free
only increases the probability the path is free.

In the following section we use this information theoretic analysis of single-query motion planning to
develop a single-query entropy-guided motion planner.

3.2 Modeling Configuration Space

The derived formulation of information gain for single-query motion planning requires an estimate of the
probability that previously unexplored configurations andedges are collision-free. We propose to use
memory-based models from the machine learning literature [11] to provide such an estimate. Memory-
based models are based on a collection of samples, much like the traditional roadmap in PRM planners. The
particular model used in this paper estimates the state of anunobserved configuration by examining the set of
nearby neighbors in the model. The majority state of the nearby neighbors determines the prediction about
the unobserved query configuration is made. We have shown elsewhere [4], that memory-based models can
build successful approximations of configuration space.

In addition to estimating the state of unexplored configuration space regions, memory-based models
have a number of appealing characteristics for our purposes. First, adding data to the model takes constant
time regardless of the size of the model. Second, querying the model is linear in the number of configurations
used to construct it. Third and maybe most importantly, the model allows the incorporation of positive and
negative samples. In traditional roadmaps, colliding samples are discarded, although they provide useful
information about the state of the configuration space.
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3.3 A Single-Query Entropy-Guided Motion Planner

We now present a single-query entropy-guided motion planner based on the formal definition of information
gain presented in Section 3.1 and the configuration space model introduced in Section 3.2. To render this
implementation practical, we have to discretize the set of all possible paths considered in the original deriva-
tion of information gain. This is accomplished using a roadmap, as in traditional sampling-based motion
planners. The probability of a particular sample is free canbe approximated using a memory-based model
in addition to this roadmap. Since both the roadmap and the memory-based model are based on samples, no
additional configuration space exploration is required formaintaining the memory-based model.

At the initial stage of motion planning, the single-query entropy-guided motion planner chooses a set of
samples from which an initial roadmap and memory-based model of configuration space are constructed. A
fraction of the samples are chosen uniformly at random, while the majority are chosen from the bounding
box surrounding the start and goal configurations (reflecting the heuristic used in LazyPRM). To build the
model, all sampled configurations are inspected by the collision checker to determine if they are free or
obstructed. The initial roadmap is constructed from configurations which are found to be free, but with-
out verifying the connecting edges. This is one important difference between the entropy-guided approach
and LazyPRM [2]. The latter constructs an initial roadmap without examining any configurations. An-
other important distinction is that while LazyPRM samples quite densely and uses short edges to connect
configurations, we sample sparsely and connect using longeredges.

Once the initial roadmap has been constructed, A* is used to find a candidate path between start and
goal configurations. The choice of A* to search the roadmap and the particular cost metric used for edges,
are derived from the information theoretic considerationsin Section 3.1.

In contrast to previous uses of A* for path planning [1, 2, 8] that use edge length for edge cost, the cost
used by entropy-guided planning is the product of edge length and the probability the edge is obstructed:
mboxCost(e) = k · Length(e) · Pf (e). The probability that an edge is obstructed is estimated using the
memory-based model. This cost is designed to favor edges that are likely to be free (Pf (e)), while simulta-
neously maximizing exploration (Length(e)). The constantk is used to balance this trade-off.

This cost function in combination with the A* algorithm represent a practical way of maximizingPs(a)
andPf (a), which in turn maximizes the information gain.Ps(a) is maximized because short paths are
favored by the A* search, andPf (a) is maximized because paths which are likely to be free are favored.
Note that the estimate ofPf (a) provided by the memory-based model is updated as configuration space ex-
ploration proceeds and observes the state of additional configurations. In addition, as edges are invalidated,
they are removed from the roadmap. Both these factors allow the heuristic used to guide exploration to
effectively incorporate the information obtained about the configuration space during the process of motion
planning.

Once a candidate path is found, the algorithm begins by examining each of its vertices. The expected
information gain from examining a vertex is greater than forexamining an edge since the set of pathsA′

affected by gaining information about a vertex is greater than the set of paths affected by gaining information
about an edge. Because observing an obstructed vertex provides more information than observing a free
vertex (see Section 3.1), the vertices are examined in orderaccording to their probability of obstruction.
If any vertex is obstructed, examination of the candidate path stops and search for a new candidate path
resumes.

Once all vertices in the candidate path are verified, the edges of the candidate path are examined. Again
the edges are examined in order by their probability of obstruction. If an edge is found to be obstructed it
is removed and search for a new candidate path resumes. If alledges are found to be free, the path is the
solution.
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Figure 1: The initial (transparent) and final (solid) configuration of a twelve degree of freedom arm in the
experimental environment.

If a candidate path between start and goal cannot be found in the roadmap, it is necessary to enhance
the roadmap to introduce new candidate paths. The resampling used in our planner is similar to that of
LazyPRM. We resample configurations that are near to obstructed edges that connect valid configurations
in the roadmap. Unlike LazyPRM, we filter the configurations that we resample through the approximate
model of configuration space. If a resampled configuration islikely to be obstructed, we do not attempt to
add it into the roadmap. The planner learns from experience and avoids resampling the same invalid regions
of configuration space. Once resampling is performed, the search for a candidate path continues using the
augmented roadmap.

4 Experiments

To validate the entropy-guided approach to single-query motion planning we perform experiments with an
implementation of the single-query entropy-guided planner described in section 3.3). The performance of
the proposed planner is compared to the performance of traditional LazyPRM [1] and a single-query quasi-
random planner (LazyQRM) [8]. Initial parameters for thesetwo algorithms are set based upon descriptions
in the respective papers.

To compare the algorithms we measure the number individual calls to the collision checker, the number
of calls to validate an edge and the total overall time to find apath. For the entropy-guided planner, the
number of collision checks used to construct the initial roadmap and model is included in the total number
of collision checks.

Experiments were run for an arm with six, nine, and twelve degrees of freedom. The twelve degree of
freedom arm is shown in Figure 1. The six (nine, twelve) degree-of-freedom arm consist of three (three,
four) links connected by joints with two (three, three) degrees of freedom. The workspace for all of the
arms is the same and is shown in Figure 1. Each algorithm runs ten times with ten different path queries.
Each path query consisted of a random starting location in the vicinity of the straight configuration shown
in Figure 1 and a goal configuration with the end effector inside the constrained location in workspace (also
pictured in Figure 1).

The results of the experiments are shown in Figure 2. It can beseen that the single-query entropy-
guided planner outperforms the other two planners. The LazyQRM planner fails to complete for either the
nine or twelve degree-of-freedom robot. It consumes all available memory and exits on a Pentium 4, 3.2Ghz
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Algorithm Success Collision Edge Runtime
Checks Checks

Entropy Guided 12% 1385.6 26.1 3.7
LazyPRM 50% 1575.5 19.25 5.0
LazyQRM 0% N/A N/A N/A

Table 1: Percentage of successful motion plans for the 12-DOF robot

with 1 gigabyte of RAM. This is indicative of the fact that LazyQRM’s grid grows exponentially in the
dimensionality of the configuration space.

It is important to note that in the twelve degree of freedom world neither the LazyPRM nor the entropy-
guided approach could reliably find a path. The LazyPRM planner successfully found a path 50% of the
time and the entropy-guided planner found a path 75% of the time. These results are summarized in Table
1. When LazyPRM is successful, it is because it has selected beneficial placements for its initial roadmap.
Entropy-Guided motion planning is less reliant on receiving a good initial roadmap and can find solutions
more often. The data given for LazyPRM is the averaged over all successful planning attempts. The execu-
tion time given for entropy-guided planning is the average time of the same number of experiments as for the
LazyPRM; the slowest experiments were discarded, as they solve motion planning problems that LazyPRM
was unable to solve.

For the purposes of practical motion planning we apply a timecut-off to each algorithm. Any path plan-
ning attempt that lasted longer than thirty seconds is halted and path planning restarts from the beginning.
The collision and edge checks as well as the runtime are all accumulated until a successful motion plan can
be determined. The graphs in Figure 2 indicate that the entropy-guided approach leads to better runtime for
all three problems. The greater number of collision checks in six and nine degrees of freedom are from the
checks used to build the initial roadmap and model. This constant cost becomes insignificant for motion
planning in higher dimensions, as seen with the twelve degree of freedom arm. It is important to note that
individual collision checks require an order of magnitude less computation than edge checks, so the slight
difference in the number of collision checks has much less ofan effect on runtime than the number of edge
checks. Additionally, single-query entropy-guided motion planning is biased toward checking edges which
are likely to be obstructed, while LazyPRM is biased toward edges likely to be free. Obstructed edges are
generally less computationally difficult to check than freeedges, resulting in further performance gains.

5 Conclusions

We present a novel single-query motion planner based on an information theoretic framework. Information
theory provides a principled way of guiding configuration space exploration to maximize progress toward
the computation of a solution to the given planning problem.This is accomplished by designing a practical
planner capable of sampling those regions of configuration space that provide maximum expected informa-
tion gain—or maximum expected entropy reduction—at each step of the planning process. Empirical results
show that the proposed single-query entropy-guided motionplanner outperforms other single-query motion
planners presented in the literature.

The performance improvements realized by the proposed planner can be attributed to two factors. First,
at every point during the planning process, the informationobtained by previously placed samples is used
to guide the process of future exploration. In contrast, existing single-query methods rely on a heuristic
that does not take into account this information. Second, the proposed method reasons about the probability
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Figure 2: Experimental results for motion planning in 6, 9 and 12 degree configuration spaces

of potential solution paths based on all available information about configuration space. Previous planners
estimate this probability without considering all available information. These factors are captured in an
information theoretic framework that allows the proposed planning method to make maximum progress
toward finding a solution, given the available information about configuration space.

We have also demonstrated the use of incrementally constructed, memory-based models in motion plan-
ning. These models augment the prevalent roadmaps and provide estimates of the state of configurations
that have not been observed, based upon known nearby samples. They are also capable of using information
from colliding samples, which are discarded by other sampling-based motion planning techniques. In the
proposed planner these models are used to estimate the probability of potential solution paths to be free of
collision.
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