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CS 603 - Path Planning

Rod Grupen
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Why Path Planning?
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Why Motion Planning? 

Virtual Prototyping 
Character Animation
Structural Molecular Biology
Autonomous Control

GE
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Origins of Motion Planning

• T. Lozano-Pérez and M.A. Wesley:
�An Algorithm for Planning Collision-Free Paths 
Among Polyhedral Obstacles,� 1979.

• introduced the notion of configuration space    
(c-space) to robotics

• many approaches have been devised since then 
in configuration space
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Completeness of Planning Algorithms

a complete planner finds a path if one exists

resolution complete – complete to the model resolution

probabilistically complete

Representation

…given a moving object, A, initially in an unoccupied region of 
freespace, s, a set of stationary objects, Bi , at known 

locations, and a goal position, g, …
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find a sequence of 
collision-free motions

that take A from s to g
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Mapping to Configuration Space -
Translational Case (fixed orientation)

Robot

Obstacle

Reference Point
C-Space
Obstacle

changing q ? 4/23/20 Robotics 10

Obstacles in 3D (x,y,q)

Jean-Claude Latombe
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Exact Cell Decomposition

Jean-Claude Latombe
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Exact Cell Decomposition

Jean-Claude Latombe
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Exact Cell Decomposition

Jean-Claude Latombe

Representation – Simplicial Decomposition
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Schwartz and Sharir

Lozano-Perez

Canny
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Approximate Methods: 2n-Tree

4/23/20 Robotics 17

Approximate Cell Decomposition

Jean-Claude Latombe

again…build a graph and search it to find a path

Representation – Roadmaps
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Visibility diagrams:

unsmooth

sensitive to error
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Roadmap Representations

Jean-Claude Latombe

Voronoi diagrams

a “retraction”

…the continuous freespace
is represented as

a network of curves…
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Summary

• Exact Cell Decomposition
• Approximate Cell Decomposition

u graph search 
u next: potential field methods

• Roadmap Methods
• visibility graphs
• Voronoi diagrams
• next: probabilistic road maps (PRM)

state of the art techniques
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Attractive Potential Fields

+

-

Oliver Brock
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Repulsive Potentials

+

-

-
Oliver Brock
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Electrostatic (or Gravitational) Field

depends on
direction
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Attractive Potential

Fatt (q) = −∇φatt (q)
= −k (q− qref )

φatt (q) =
1
2
k (q− qref )

T (q− qref )
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A Repulsive Potential
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Repulsive Potential

Frep (q) = −∇φ(q)
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Sum Attractive and Repulsive Fields
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Artificial Potential Function

+ =

Ftotal (q) = −∇φtotal

φatt (q) + φrep(q) = φtotal (q)
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Potential Fields

● Goal: avoid local minima
● Problem: requires global information
● Solution: Navigation Function

Robot

Obstacle

Goal

Fatt

Frep

Fatt

Frep

Navigation Functions

Analyticity – navigation functions are analytic because 
they are infinitely differentiable and their Taylor series 
converge to φ(q0) as q approaches q0

Polar – gradients (streamlines) of navigation functions 
terminate at a unique minima
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Navigation Functions
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Morse - navigation functions have no degenerate critical 
points where the robot can get stuck short of attaining 
the goal. Critical points are places where the gradient of 
φ vanishes, i.e. minima, saddle points, or maxima and 
their images under φ are called critical values. 

Admissibility - practical potential fields must always 
generate bounded torques 
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The Hessian 

multivariable control function, f(q0,q1,...,qn) 
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if the Hessian is positive semi-definite over
the domain Q, then  the function f is convex over Q

Harmonic Functions
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if the trace of the Hessian (the Laplacian) is 0

then function f is a harmonic function 

laminar fluid flow, steady state temperature distribution, 
electromagnetic fields, current flow in conductive media

Properties of Harmonic Functions
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Min-Max Property -
...in any compact neighborhood of freespace, the 
minimum and maximum of the function must occur 
on the boundary. 

Properties of Harmonic Functions
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Mean-Value - up to truncation error, the value of the
harmonic potential at a point in a lattice is the 
average of the values of its 2n Manhattan neighbors. 

¼ ¼
¼

¼

analog & numerical methods
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Numerical Relaxation
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Jacobi iteration
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Harmonic Relaxation: Numerical Methods

Gauss-Seidel

Successive Over Relaxation

Properties of Harmonic Functions
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Hitting Probabilities - if we denote p(x) at state x as
the probability that starting from x, a random walk 
process will reach an obstacle before it reaches a 
goal—p(x) is known as the hitting probability 

greedy descent on the harmonic function minimizes 
the hitting probability. 

Minima in Harmonic Functions
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for some i, if ∂2φ/∂xi2 > 0 (concave upward), then 
there must exist another dimension, j, where 
∂2φ/∂xj2 < 0 to satisfy Laplace’s constraint. 

therefore, if you’re not at a goal, there is always a way 
downhill... ...there are no local minima... 
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Configuration Space
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Harmonic Functions for Path Planning
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Harmonic Functions for Path Planning
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Reactive Admittance Control
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ok, back to graphical methods…
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Probabilistic Roadmaps (PRM)

● Construction
– Generate random configurations
– Eliminate if they are in collision
– Use local planner to connect configurations

● Expansion
– Identify connected components
– Resample gaps
– Try to connect components

● Query
– Connect initial and final configuration to roadmap
– Perform graph search
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Probabilistic Roadmaps (PRM)

Oliver Brock
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Sampling Phase

● Construction
– R = (V,E)
– repeat n times:

– generate random configuration
– add to V if collision free
– attempt to connect to neighbors using local planner, 

unless in same connected component of R
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Path Extraction

● Connect start and goal configuration to roadmap 
using local planner

● Perform graph search on roadmap
● Computational cost of searching negligible 

compared to construction of roadmap
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Local Planner

q1

q2

tests up to a specified resolution d!

d
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Another Local Planner

perform random walk of predetermined length;
choose new direction randomly after hitting obstacle;
attempt to connect to roadmap after random walk
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Summary: PRM

• Algorithmically very simple
• Surprisingly efficient even in high-dimensional C-

spaces
• Capable of addressing a wide variety of motion 

planning problems
• One of the hottest areas of research
• Allows probabilistic performance guarantees
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Variations of the PRM

• Lazy PRMs

• Rapidly-exploring Random Trees
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Lazy PRM

observation: pre-computation of roadmap takes a 
long time and does not respond well in dynamic 

environments
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Lazy PRM

Oliver Brock
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Rapidly-Exploring Random Trees (RRT)

Oliver Brock
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Rapidly-Exploring Random Trees (RRT)

Steven LaValle


