

UMassAmherst		
Control Basis*: Track primitive		
	objectives X sensors X effectors	
T: TRACK $a = \phi \Big _{\tau}^{\sigma}$	action: closed-loop feature (σ) tracker where sensor viewpoint is controlled with kinematic chain τ state: $v(\alpha) = 0$ "unknown"	
	= 1 no reference = 2 transient = 3 converged	
visual foveation – contact force tracking any feature of any signal		
Laboratory for Perceptual Robotics - Department of Computer Science 3		

UMassAmherst

The Bellman Equation

Define a policy, $\pi(s, a)$, to be a function that returns the probability of selecting action $a \in A$ from state $s \in S$

the value of state s under policy π , denoted $V_{\pi}(s)$, is the expected sum of discounted future rewards when policy π is executed from state s,

$$V^{\pi}(s) = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \mid s_{t} = s \right\}$$

 $0.0 < \gamma \le 1.0$ represents a discounting factor per decision, and scalar r_t is the reward received at time t.

17

Laboratory for Perceptual Robotics – Department of Computer Science

UMassAmherst		
Example: Behavioral Logic for Development		
propositions that constrain patterns of discrete events in the dynamical system Platform stability constraints • at least 1 of 4 stable trivod stances to be true at all times		
$p_0 \lor p_1 \lor p_2 \lor p_3$ • kinematic constraints		
$ egreen (p_0 \wedge p_1) \wedge egreen (p_2 \wedge p_3)$ reduced model:		
 32 states × 157 actions reduced by 99.94 % 		
Laboratory for Perceptual Robotics – Department of Computer Science	23	

7