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Laboratory for Perceptual Robotics – Department of Computer Science 

Control Basis:  
Landscapes of Attractors 

Rod Grupen,  
CS 603 Robotics 
UMass Amherst 

Potential Functions 
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                 “funneling” 
 classifiers in error phase space 

fixed point sensory geometry 
relative to features 

afforded by the environment 
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action: closed-loop feature (σ) tracker where 
sensor viewpoint is controlled with kinematic 
chain τ	



state: γ(a) =  0    “unknown” 
                  =  1      no reference 
                     =  2     transient 
                     =  3     converged 
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Control Basis*: Track primitive 

T: Track 

a =  

visual foveation – contact force tracking 
any feature of any signal 

objectives        sensors       effectors  X X 
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Representational Foundations - the control basis 

procedural!

  declarative 

Manfred Huber!

a control theoretic framework with built in intentions!

continuous      
sensory signals fσ	

 φ

σ	

 τ	



continuous 
uτ motor variables 

discrete 
sensorimotor 

resources!

multiple 
navigation functions!

typing - characteristic input and output types 
supports multiple implementations!
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Control Basis Actions 
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φ	


σ	



τ	


ENV 

J = ∂φ(σ )
∂uτ

∈ R1xn

vector of changes in setpoints 

scalar 

more rows than columns 

redundant (underconstrained) 

Control Basis Actions 
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Δφ(σ ) = JΔuτ

Δuτ =κ[J
#Δφ(σ )]

= −κJ #φ(σ )

J #   Moore-Penrose pseudoinverse
[Appendix A.9]

J # = JT [JJT ]−1

Multi-Objective Actions 
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c2< c1⇒κ1J1
#Δφ1(σ1)+[I − J1

#J1][κ2J2
#Δφ2 (σ 2 )]

J #  and (I − J #J )   are orthogonal?
(J # )T (I − J #J ) = 0

[(I - J #J )T  J # ]T = (J # − J #JJ # )T = 0
from the Moore-Penrose conditions

Multi-Objective Controllers 
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Tiling the State Space with Skills 

c1 
c2 

given a description of 
sensory and motor resources 
this becomes a combinatoric 

basis for state and action 

c1= 

c2= 

1 

2 

1 

2 
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Tiling the State Space with Skills 

skills - sequential structure 
state discrimination - co-affordances 

some of these are referenced to stimuli in the environment that 
move in (semi)rigid groups … “objects,” “rooms,” etc 

 
joint distributions/graph homomorphisms convey important 

context information 
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Tiling the State Space with Skills 

skills - sequential structure 
state: [ g1 …  gn  ] 

“objects”: transition dynamics 
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Tiling the State Space with Skills 

c1 c2 

c3 

c4 
c5 

c6 
c16 

c7 
c9 c10 

c12 
c13 

c14 
c15 

c17 

c8 

c11 

LMT 1984 
Burridge 1999 
Tedrake 2009 
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sequential, multi-objective 
control 
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Conditioned Response  

Pavlov, I. P. (1927), “Conditioned Reflexes: An Investigation of the 
Physiological Activity of the Cerebral Cortex,” Translated and Edited by G. 
V. Anrep. London: Oxford University Press. 
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A  Computational Model for Conditioned 
Response  

states!
actions 

Reinforcement Learning - value iteration 
 

•  “diffusion” processes 

•  curse of dimensionality diminished by exploiting 
neurological structure 

value functions - an abstraction 
of the potential field 

value functions 

M = < S, A,    , P, R > 
    S: set of system states 
    A: set of available actions 
                       subset of actions allowed from each state 
                                             probability that (sk, ak) 
            transitions to state sk+1 
                               real-valued reward for (state, action) pair 
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Markov Decision Processes  
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The Bellman Equation  

Define a policy, π(s, a), to be a function that returns the probability of 
selecting action a ∈ A from state s ∈ S   

the value of state s under policy π, denoted Vπ(s), is the expected 
sum of discounted future rewards when policy π is executed from state s,  
 
                                   Vπ(s) = Eπ { S gk rt+k+1 | st = s}  
 
           0.0 < γ ≤ 1.0 represents a discounting factor per decision, and  
                        scalar rt is the reward received at time t.  
   

k=0 

∞  
 

                                   Vπ(s) = Eπ { S gk rt+k+1 | st = s} 
 
                                             =  Eπ{rt+1+ γ S γk rt+k+2|st = s} 
       
                                            =  S π(s, a) S Pss’ 

 
 [ Rss’  + g Eπ {S γk rt+k+2 | st = s’} ] 

 
                                            = S π(s, a) S Pss’ 

 
 [ Rss’  + g Vπ(s’) ] 
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The Bellman Equation  

k=0 

∞  
 

k=0 

∞ 

a a 
a s’ 

∞  
 

k=0 

a a 
a s’ 
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The Bellman Equation  

V*(s) = max Vp(s)  
 
V*(s) = max S Pss’ 

 
 [ Rss’  + g V*(s’) ] a a 

a s’ 

p 
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Reinforcement Learning: Q-Learning  

Qp(s,a)= SPss′ [Rss′ +γVk(s’)] 
 
 
Q(s,a)k+1 ← Q(s,a)k + α [r(s′) + γ max Q(s′,a) − Q(s,a)]  
  
 

s’ 

a a 

a   
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Example: Learning to Walk (ca. 1996) 

Resource Model 
•  sensor resources - 
•  configuration of legs {0123} 
•  configuration of body (x,y,θ) 

•   effector resources -  
•  configuration of legs {0123} 
•  configuration of body (x,y,θ) 

•   control types - 
•  moment control 
•  kinematic conditioning 

THING Quadruped 
- four coordinated robots 
- 213 states × 1885 actions 
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Φ1a
abcabc ∈ 0123{ }

Φ2ϕ
0123kinematic 

 conditioning 

moment control 

Example: Walking Gaits 

13 controllers 
 
 

 
 
total of 1885 concurrent control 
options  
 
discrete events: 

p0 ←Φ*
012

p1← Φ*
023

p2 ←Φ*
123

p3 ← Φ*
013

p4 ←Φϕ
0123
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Example: Behavioral Logic for Development  

Platform stability constraints 
•  at least 1 of 4 stable tripod stances to be true at all times 

•  kinematic constraints 

propositions that constrain patterns of discrete 
events in the dynamical system  

reduced model: 
•  32 states × 157 actions 

•  reduced by 99.94 % 
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Example: ROTATE schema 
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Transfer 

“written” by this robot 
ported to this robot 
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Implications of Developmental Hierarchy 

68 

fini 


