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Control Basis:
Landscapes of Attractors

Rod Grupen,
CS 603 Robotics
UMass Ambherst
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INaos A here

Control Basis*: Track primitive

objectives X sensors X effectors

action: closed-loop feature (o) tracker where
T: TRACK sensor viewpoint is controlled with kinematic
a= ¢ |g chain
state: y(a) = o “unknown”
=1 noreference
= 2 transient

= 3 converged

visual foveation — contact force tracking
any feature of any signal
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Potential Functions

“funneling”
classifiers in error phase space

7

fixed point sensory geometry
relative to features
afforded by the environment
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Representational Foundations - the control basis

a control theoretic framework with built in intentions

multiple
navigation functions declarative
continuous continuous
sensory signals f; ‘ u, motor variables
| \ | rocedural
—lol . T [— P
discrete
sensorimotor
resources
typing - characteristic input and output types
supports multiple implementations Manfred Huber
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JMassAmbhers
Control Basis Actions

O «—
¢ ENV
T —>
scalar
more rows than columns /
(o
J = ¢( ) E Rlxn
ou,

redundant (underconstrained)
vector of changes in setpoints
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J\MassAmbers
Multi-Objective Actions

c2<cl=kJ/A¢ (o) +[1-J]J 1K, A, (0,)]

J" and (I-J"J) are orthogonal?
INH'Ua-J'1H=0

[(-J'D" I =" =131 =0
from the Moore-Penrose conditions
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JMassAmbhers
Control Basis Actions

Ap(0) = JAu,

J" Moore-Penrose pseudoinverse

[Appendix A.9]
Au_ =k[J'Ap(0)]

J =TT
=-KkJ'¢(0)
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J\MassAmbers
Multi-Objective Controllers

oy a0, } ks =TfAd
A K3 = Jqub;) -+ (Ig — Jng)H;;
2,

A Kaaga = JTA¢1 + (I — IF T ks

af,
K3l
embedded
Tl (@)l oo
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°1'S
Tiling the State Space with Skills
given a description of
q 2 C, sensory and motor resources
c this becomes a combinatoric
basis for state and action
_ Ao
C= ¢ | 7'11
_ Ao
G~ ¢ | 7'22
9
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Tiling the State Space with Skills

O
TS

)

K
00
LN

skills - sequential structure

state discrimination - co-affordances

move in (semi)rigid groups ... “objects,

99 ¢

JMass A

hers

Tiling the State Space with Skills

skills - sequential structure
state: [y, ... Y, |

“objects”: transition dynamics
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context information
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some of these are referenced to stimuli in the environment that

rooms,” etc
joint distributions/graph homomorphisms convey important

JMass A

hers

Tiling the State Space with Skills
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9,

LMT 1984

Burridge 1999
Tedrake 2009
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J\MassAmber

[

sequential, multi-objective
control

la
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MassAmbers

A Computational Model for Conditioned
Response

value functions - an abstraction
of the potential field

Reinforcement Learning - value iteration

« “diffusion” processes

pO Y . . . e e
" “:':‘::::‘:‘.‘:‘:‘.,. * curse of dimensionality diminished by exploiting
3 = .
actions S neurological structure
states
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I\MaccApbers
Conditioned Response

Pavlov, I. P. (1927), “Conditioned Reflexes: An Investigation of the
Physiological Activity of the Cerebral Cortex,” Translated and Edited by G.
V. Anrep. London: Oxford University Press.
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MassAmbers
Markov Decision Processes

M=<S§,4,V,P R>
S set of system states
A: set of available actions
¥ C S x A subset of actions allowed from each state
P:SxAxS — [0,1] probability that (s, a,)
transitions to state s,
R:S x A— R real-valued reward for (state, action) pair
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IMassAmbers
The Bellman Equation

Define a policy, n(s, a), to be a function that returns the probability of
selecting action a € A from state s € S

the value of state s under policy m, denoted V_(s), is the expected
sum of discounted future rewards when policy = is executed from state s,

Vi(s) =E, {kzonk Tigey | 8= 8}

0.0 <y < 1.0 represents a discounting factor per decision, and
scalar 1, is the reward received at time t.
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The Bellman Equation

V*(s) = max V"(s)
™

Vi(s) =max I P[RS +Y V'(S) ]
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IMassAmbers
The Bellman Equation

Vi(s) =E, {kZOYk Ty | 8, = s}
= En{rt+l+ ’Ykzo’yk rt+k+2|s[= S}
= 2n(s,2) 3 Py [RG Y B {2 vt 5= 57} ]

=3 n(s,2) 3 P [RY+Y VA(s)]
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Reinforcement Learning: Q-Learning

Q"(s,a)= 2Py, [Ri+YVi(s")]

Q(s,)csy = Qsa)+ o [1(s") +y max Q(s',2) ~ Q(s,2)]
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JMassAmbers
Example: Learning to Walk (ca. 1996)

Resource Model

* sensor resources -
» configuration of legs {0123}
« configuration of body (x,y,0)

¢ effector resources -
* configuration of legs {0123}
« configuration of body (x,y,0)

THING Quadruped
- four coordinated robots
- 213 states x 1885 actions

® control types -
* moment control
« kinematic conditioning
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INaos A here
Example: Behavioral Logic for Development

propositions that constrain patterns of discrete
events in the dynamical system

Platform stability constraints
* af least 1 of 4 stable tripod stances to be true at all times

PoVp1Vp2Vps
« kinematic constraints

=(po Ap1) A —(p2 A ps3)
reduced model:

* 32 states x 157 actions
* reduced by 99.94 %
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JMassAmbers
Example: Walking Gaits

13 controllers
moment control (I)l;lb"abc € {0 1 23}
kinematic 0123
conditioning 2¢

total of 1885 concurrent control
options

discrete events:

012
-
Py < D. PO
D3 <= @
P - P
1 * 0123
Py
— B i
P> g
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INaos A here
Example: ROTATE schema
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Transfer

“written” by this robot

ported to this robot
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fini

68

IMacsAnhere
Implications of Developmental Hierarchy

native control
basis primitives

Ao = {61, 2, 05}
stage 1 l G = {4162}
Ay = {1, ¢, ¢, ROTATE}
stage 2 l Cy = {¢1, ¢», ROTATE}
Az = {¢1, ¢, 63, ROTATE, STEP}

stage 3 l C3 = {¢1, $2, ROTATE, STEP}
Az = {¢1, ¢, 63, ROTATE, STEP, WALK}
stage 4 ‘ Cy = {¢3, WALK}
Ay = {¢1, 62, b3, ROTATE, STEP, WALK, NAVIGATE}
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