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The Control Basis Primer: 

Landscape of Attractors 
Markov Decision Processes 

States, Actions , Search & Track 
Markovian Supervisory Structure 

Q-learning (value iteration) 
Risk Sensitive Control (policy iteration) 

Φ × Σ × 𝒯
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Closed-Loop Control Abstraction
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status   ∈ {0, 1, 2}

actions:     
    : a potential function 
    : sensor 
    : motor units

ϕ |σ
τ

ϕ
σ
τ

from now on, our focus is on how 
to give setpoints to motor units
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motor units: 
void PCcontroller_eyes(roger, time) 
void PDController_arms(roger, time) 
void PDBase_translate(roger, time) 
void PDBase_rotate(roger, time) 
void PDController_base(roger, time)

Inventory
tools: 

void fwd_arm_kinematics( ) 
int inv_arm_kinematics( ) 
int avg_red_pixel( ) 
void stereo_observation( ) 

skills: 
int TrackBall( )             /* aka Track( ), eyes, eyes+base */ 
int SearchTrackBall( )  /* aka SearchTrack( ), eyes+base */ 
int Chase( ) 
int Touch( ) 
int ChaseTouch( )
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/* file:      project4.c                                                                                                                      */ 
/* global variables, scope is a “project” i.e. a single task supervisor                                         */ 
#define SEARCHBALL 0 
#define TRACKBALL   1 

for each action  {        /* for both SearchBall( ) & TrackBall( )                                         */ 
    for each dof { r_DiffSetpt[action][dof] = 0.0; } } 

void project4_control(roger, time) { 
   state = 0; 
   /* execute all   return status & new recommended setpoints */ 
   SearchBall( );                  /* assigns r_DiffSetpt[0][NDOF], no return status      */ 
   /* Roger observes states directly! */ 
   d = TrackBall( );              /* assigns r_DiffSetpt[1][NDOF], plus returns status  */ 

   /* make a control decision */ 
   switch(TrackBall( )) {             
        case(0): submit r_DiffSetpt[SEARCHBALL] to motor units; break 
        case(1): submit r_DiffSetpt[TRACKBALL] to motor units; break 
        case(2): submit r_DiffSetpt[TRACKBALL] to motor units; break 
      } 
} 
return d;                                  /* SearchTrackBall( ) returns TrackBall( ) status  */

a ∈ A

a ∈ A
d ∈ {0, 1, 2}

d ∈ {0, 1, 2}

d ∈ {0, 1, 2}

Basic Supervisory Structure: SearchTrackBall( )
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Basic Supervisory Structure: In Practice
concurrency: 
   in some cases, you can submit more than one recommendation 
      for example, Chase( ) uses the mobile base 
                           Touch( ) uses an arm 
      disjoint degrees of freedom can receive setpoints simultaneously 

(they treat each other as perturbations) 
new_setpoint =  
        current_setpt + r_DiffSetpt[CHASE] + r_DiffSetpt[TOUCH] 

there is another way to compose concurrent controllers in the Chapter 

in most cases, Track( )’s are subsumed by SearchTrack( )’s
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The Control Basis
The newborn uses a maturational schedule for engaging sensory 
and motor resources to throttle the computational complexity of 

learning to interact with unstructured environments. 

In place of a relatively small set of special purpose 
developmental reflexes, an exhaustive array of closed-loop 

control relations is proposed that tile a high dimensional state 
space with multiple lower-dimensional attractors. 

to support programming and machine learning, the actions in the 
architecture must be parameterized by resources, asymptotically 

stable and composable
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State Transitions - Probabilistic Models of the Environment

Laboratory for Perceptual Robotics – College of Information and Computer Sciences 

closed-loop feature TRACK-er with (s, t) resources 
s : sensor resources that establish concrete observable “facts”

about the environment 
t : motor resources actuate kinematic chains controlling sensor

viewpoints

44

T:TRACK

Control Basis: a parametric Landscape of Attractors

state : g(a) membership functions in the phase portrait (f, f) over empirical models
.

• a framework for stochastic exploration over resource combinations (s, t) that 
establish a control context in response to environmental stimuli

• the orient counterpart of TRACK actions
• establish a  probabilistic basis for environmental structure 

))

Sampled from ))

sampled from 
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S: SEARCH
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Control Basis: SEARCH primitive

•  the orient counterpart of 
TRACK actions

Book

10 m

20 m

Clamp

saturation

motion
tilt pan

tilt pan
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S: SEARCH

(TRACK)
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EXAMPLE: Coordinated Human-Robot Search 

on average, HR team performed 40% better than human alone
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Landscapes of Attractors

Where’s 
my coffee 
cup?
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Landscapes of Attractors
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Landscapes of Attractors – visual features

parse the scene using geometric structure in 
constellations of visual features

serve as 
goals for 
oculomotor 
controls

12
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Landscapes of Attractors - tactile

serve as 
goals for 
arm/hand 
controls
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parse the scene using geometric structure in 
constellations of tactile features
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Landscapes of Attractors – multimodal

a multimodal 
goal set 
defining my 
coffee cup

14

parse the scene using geometric structure in 
constellations of multmodal features
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Markov Decision Processes 
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 set of system states 
 set of available actions 

 probability that        
transitions to state  

  real-valued reward for 

M = < S, A, T, R >
S :
A :
T : S × A × S ↦ [0,1] (sk, ak)

sk+1
R : S × A ↦ ℝ (sk, ak)

definition of a memory-less stochastic process 
probability of future states depends solely on the current state
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State Transitions - Probabilistic Models of the Environment

Laboratory for Perceptual Robotics – College of Information and Computer Sciences 

17
33

Tiling the State Space with Skills

skills - sequential structure 
state discrimination - co-affordances
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Tiling the State Space with Skills

c1
c2

c3

c4

c5
c6

c16

c7

c9 c10

c12
c13

c14

c15

c17

c8

c11

LMT 1984 
Burridge 1999 
Tedrake 2009
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Tiling the State Space with Skills

some of these are referenced to stimuli in the environment that move in 
(semi)rigid groups … “objects,” “rooms,” etc 

joint distributions/graph homomorphisms  
convey important context information

skills - sequential structure 
state: [ g1 …  gn  ]

“objects”: transition dynamics 
reference to places (q1,q2) not required
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sequential, multi-objective control 

φrom: the Postural range of motion objective;  

φc : Search for contact signals;  

Φg: a grasp control policy  

φm: a Postural bimanual manipulability of 
the arms; and 
 
φl: a Postural localizability controller
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Example: Reading a Bar Code
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Potential Functions
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The value of a scalar potential at the location of a particle in a field represents the 
energy that will be liberated if the particle is released from this configuration.  

e.g. the gravitational potential of a particle of mass m near the Earth is the work 
required to move particle from the surface of the Earth to altitude h. 

The gradient of the potential field defines a force acting on the particle that returns 
the system to its equilibrium state. 
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Potential Functions – Spring-Mass-Damper
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For the SMD, the potential function is the energy stored in the spring 

which is released when the spring is allowed to assume its original shape  

Hooke’s law
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Equilibrium Point Theory - Differential Geometry

Critical points – places where the gradient vanishes
stable fixed points unstable critical points
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minima
saddle 
point maxima
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Potential Functions and Local Minima

Curvature in the Neighborhood of a Critical Point

a critical point is said to be degenerate if it also has zero curvature 

excluding degenerate critical points, gradient descent will converge 
to type 0 critical points exclusively

24
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Potential Functions and Local Minima

25

convex – if the Hessian of f is positive semi-definite over domain q,  
 

harmonic –  
               if the trace of the Hessian 

         then f has no local minima 

           it has ≤ 1 stable fixed points on the interior of 𝐪
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Harmonic Functions 
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soap films, laminar fluid flow, steady state temperature in thermally 
conductive media, voltage distribution in electrically conductive media, 

• exclude local minima (and maxima) 
• only type 1 critical points (saddle points) (sets of measure zero) 
• gradient flow produces non-intersecting streamlines 
• hitting probability of a random walk --- use in path planning
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Navigation Functions

analyticity - infinitely differentiable (C∞ continuous) such that its Taylor 
series about q0 converges to f (q) for q in the neighborhood of q0.  

polar - gradients (streamlines) terminate at a unique minimum. 
                    functions that contain type 1 minima exclusively are polar 

Morse – functions whose isolevel curves are single points, closed curves, or 
closed curves that join at critical points …  
               Morse functions cannot include degenerate critical points 

admissibility - Potential fields for robot control require bounded torque at 
obstacle boundaries (and everywhere else in the interior subset of 
configuration space as well). 
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Funnel-ing the World Using TRACK/SEARCH  Actions  

28
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action: closed-loop feature (σ) tracker where 
sensor viewpoint is controlled with kinematic 
chain τ

 satisfies the important properties of a navigation 
function
ϕ

Control Basis: TRACK primitive

T: TRACK

a = 

… - visual - auditory – contact force - … 
any feature of any signal whose source is in the 3D world

objectives     sensors    effectors XX
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The Track( ) Control Jacobian

NO_REFERENCE
TRANSIENT

CONVERGED (or ∇𝜙 = 0) 
(or ∇𝜙 > 0) 
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Summary: Control Basis TRACK Actions

ENV

vector of changes in setpoints

scalar

m  n  
fewer rows than columns 

redundant (underconstrained)

<

J =
∂ϕ(σ)

∂uτ
∈ R1×n

ϕ |σ
τ
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Multi-Objective Control

where, 

the annihilator of J 
Appendix A.9
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Multi-Objective Control
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Control Basis: POSTURAL primitive
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Combining SEARCH and TRACK

35

tendon routing in 
the human finger
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ControlBasis-II
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automating sequential control composition 
• reinforcement learning  

example: hierarchical walking 
• Dynamic Motion Primitives (DMPs) 
• policy search
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Conditioned Response 

Pavlov, I. P. (1927), “Conditioned Reflexes: An Investigation of the 
Physiological Activity of the Cerebral Cortex,” Translated and Edited by G. V. 

Anrep. London: Oxford University Press.
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A  Computational Model for Conditioned Response 

states
actions

Reinforcement Learning - value iteration 

• “diffusion” processes 

• curse of dimensionality diminished 
by exploiting neurological structure

value functions - an generalization 
of the potential field

value functions
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Markov Decision Processes 
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describe a memory-less stochastic process 

the conditional probability distribution of future states of the 
process depends only on the current/present state---not how the 

process got to this state. 
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The Bellman Equation 

Define a policy, π(s, a), to be a function that returns the probability of  
selecting action a ∈ A from state s ∈ S  

the value of state s under policy π, denoted Vπ(s), is the expected sum 
of discounted future rewards when policy π is executed from state s, 

0.0 < γ ≤ 1.0 represents a discounting factor per decision, and  
                        scalar rt is the reward received at time t.  
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The Bellman Equation 
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The Bellman Equation 
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Value Iteration 
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Dynamic Programming (DP) algorithms compute optimal policies  
from complete knowledge of the underlying MDP 

Reinforcement Learning (RL) algorithms are an important subset of DP algorithms 
that do not require prior knowledge of transition probabilities in the MDP.  

provides the basis for a numerical iteration that incorporates the Bellman 
consistency constraints to estimate Vπ (s).  

 

a recursive numerical technique that  converges to Vπ as k → ∞ 
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Q-learning
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Typically, DP employs a full backup--- a comprehensive sweep through the 
entire state-action space using numerical relaxation techniques (Appendix C).  

RL techniques generally estimate Vπ (s) using sampled backups at the expense 
of optimality guarantees. 

Attractive in robotics because it focuses exploration on portions of the state/
action space most relevant to the reward/task 

greedy ascent of the converged value function is an optimal policy for 
accumulating reward.  
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Q-learning
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Quality function – the value function written the state/action form 

Policy improvement: 

The policy improvement theorem guarantees that a procedure like this 
will lead monotonically toward optimal policies.  
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Q-learning
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a natural paradigm for composing skills using the control 
basis actions because it can construct policies using 

sequences of actions by exploring control interactions in situ. 

                         policy       π(s) = argmax Q(s, ai) 
ai  

maps states to optimal actions by greedy ascent 
of the value function. 
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Example: Learning to Walk (ca. 1996)
Resource Model

sensor resources - 
• configuration of legs {0123} 
• configuration of body (x,y,θ) 

effector resources -  
• configuration of legs {0123} 
• configuration of body (x,y,θ) 

control types - 
• moment control 
• kinematic conditioning

THING Quadruped 
four coordinated robots 
213 states × 1885 actions
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13 controllers 

total of 1885 concurrent control options  
discrete events:
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Φ1a
abcabc ∈ 0123{ }

Φ2ϕ
0123kinematic 

 conditioning

moment control

Example: Walking Gaits

p0 ←Φ*
012

p1← Φ*
023

p2 ←Φ*
123

p3 ← Φ*
013

p4 ←Φϕ
0123

Laboratory for Perceptual Robotics – College of Information and Computer Sciences 
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Example: Behavioral Logic for Development 

Platform stability constraints 
• at least 1 of 4 stable tripod stances to be true at all times 

• kinematic constraints

propositions that constrain patterns of discrete events in 
the dynamical system 

reduced model: 

• 32 states × 157 actions 

• reduced by 99.94 %

Laboratory for Perceptual Robotics – College of Information and Computer Sciences 
50

56

Example: ROTATE schema
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Transfer

“written” by this robot

ported to this robot
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Implications of Developmental Hierarchy
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“Objects” - Fully-Observable Case (Aspect Transition Graph)

…at least one stable grasp must exist at all times…(γ(Φg1)    γ(Φg2)    γ(Φg3))

Rob Platt
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Assembly 

feature-level 
milestones for 

planning and learning 
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Hierarchical Commonsense Control Knowledge

γ(prone) V γ(4-point) V γ(balance)prone

three
 point

four
point

balancing
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Hierarchical Commonsense Control Knowledge

γ(prone) V γ(4-point) V γ(balance)prone

three
 point

four
point

balancing
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Affordance Modeling - Three Objects

exploration habituates 
when model stops 

changing

visual hue tracker

grasp

pick-and-place

65

Stephen Hart
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Modeling Simple Assemblies

66

stable multi-body relations
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Human Tracking

•  disambiguate human 
structure against cluttered 

backgrounds

•  references (hands/face) 
for control behavior and 

modeling
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Expressive Communicative Actions
learning about kinodynamic and intentional agents

unreachable objects can be 
reachable in the presence of 

a human being, the 
dynamics of the world 

change
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Receptive Pointing Skills


