Grasping

- MASS CHUSETT
 - mobility and connectivity analysis
 - form closure
 - the grasp Jacobian
 - force closure

Laboratory for Perceptual Robotics – College of Information and Computer Sciences

1

UMassAmherst

Grasping and Manipulation

Laboratory for Perceptual Robotics – College of Information and Computer Sciences

2

UMassAmherst

Grasping and Manipulation

Laboratory for Perceptual Robotics - College of Information and Computer Sciences

UMassAmherst

Screw Nomenclature: Wrenches and Twists

twist: generalized velocity

$$\mathbf{v} = egin{bmatrix} v_x \ v_y \ v_z \ \omega_x \ \omega_y \end{bmatrix}$$

$$egin{aligned} & \underline{power}. & \mathbf{w}^T\mathbf{v} = [f_x \;\; f_y \;\; f_z \;\; m_x \;\; m_y \;\; m_z] & egin{aligned} v_y \ v_z \ \omega_x \ \omega_y \end{aligned}$$

wrench: generalized force

$$\mathbf{w} = egin{bmatrix} f_x \ f_y \ f_z \ m_x \ m_y \ m_z \ \end{pmatrix}$$

v and w do not constitute linear vector spaces!

Laboratory for Perceptual Robotics - College of Information and Computer Sciences

Grasp Analysis - Mobility and Connectivity

 $\mathbf{v} \in V$: object twists consistent with contact constraints; and $\overline{\mathbf{v}} \in \overline{V}$: object twists that are restricted by contact constraints.

$$span\{V \cup \overline{V}\} = \mathbb{R}^6 \quad and \quad \{V \cap \overline{V}\} = \{\emptyset\}$$

Laboratory for Perceptual Robotics - College of Information and Computer Sciences

UMassAmherst

Grasp Analysis - Mobility and Connectivity

for a system of n contacts to immobilize a body:

$$\{\mathbf{v}_1 \cap \mathbf{v}_2 \cap \cdots \cap \mathbf{v}_n\} = \{\emptyset\}, \text{ and }$$

$$span\{\overline{\mathbf{v}}_1 \cup \overline{\mathbf{v}}_2 \cup \cdots \cup \overline{\mathbf{v}}_n\} = \mathbb{R}^6$$

Laboratory for Perceptual Robotics - College of Information and Computer Sciences

UMassAmherst

Grasp Analysis - Mobility and Connectivity

finger #1:
$$\begin{bmatrix} v_x \\ v_y \end{bmatrix}_O = \begin{bmatrix} 1 \\ 0 \end{bmatrix}_O \dot{q}_{1a} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}_O \dot{q}_{1p}$$

$$= \overline{\mathbf{v}}_1 \quad \dot{q}_{1a} + \mathbf{v}_1 \quad \dot{q}_{1p}$$

finger #2:
$$\begin{bmatrix} v_x \\ v_y \end{bmatrix}_{Q} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}_{Q} \dot{q}_{2a} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}_{Q} \dot{q}_{2p}$$

$$= \overline{\mathbf{v}}_2 \qquad \dot{q}_{2a} + \mathbf{v}_2 \qquad \dot{q}_{2b}$$

finger #3:
$$\begin{bmatrix} v_x \\ v_y \end{bmatrix}_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}_0 \dot{q}_{3a} + \begin{bmatrix} 1 \\ 0 \end{bmatrix}_0 \dot{q}_{3p}$$

imagine that active dof can move to a position and then "lock" in place

$$= \overline{\mathbf{v}}_3 \quad \dot{q}_{3a} + \mathbf{v}_3 \quad \dot{q}_3$$

Laboratory for Perceptual Robotics - College of Information and Computer Sciences

UMassAmherst

Grasp Analysis - Mobility and Connectivity

$$\textit{finger #1:} \qquad \left[\begin{array}{c} v_x \\ v_y \end{array}\right]_O = \left[\begin{array}{c} 1 \\ 0 \end{array}\right]_O \dot{q}_{1a} + \left[\begin{array}{c} 0 \\ 1 \end{array}\right]_O \dot{q}_{1p}$$

$$= \quad \overline{\mathbf{v}}_1 \qquad \dot{q}_{1a} + \quad \mathbf{v}_1 \qquad \dot{q}_{1p}.$$

finger #2:
$$\begin{bmatrix} v_x \\ v_y \end{bmatrix}_Q = \begin{bmatrix} -1 \\ 0 \end{bmatrix}_Q \dot{q}_{2a} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}_Q \dot{q}_{2p}$$

$$\bar{\mathbf{v}}_2 \quad \dot{q}_{2a} + \mathbf{v}_2 \quad \dot{q}_{2p},$$

considering just fingers 1 and 2...

$$V = \bigcap_{i=1}^{2} \mathbf{v}_{i} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \bigcap \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

⇒ fingers 1 and 2 alone do not fully immobilize the object

Laboratory for Perceptual Robotics - College of Information and Computer Sciences

Grasp Analysis - Mobility and Connectivity

considering fingers 1, 2, and 3, the intersection of unrestricted object velocities is empty...

$$V = \bigcap_{i=1}^{3} \mathbf{v}_{i} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \bigcap \begin{bmatrix} 0 \\ 1 \end{bmatrix} \bigcap \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \emptyset,$$

...these three (fixed) contacts fully immobilize the object,

and the union of velocity constaints derived from active degrees of freedom spans \mathbb{R}^2 :

$$\overline{V} = \bigcup_{i=1}^3 \ \overline{\mathbf{v}}_i = \left[\begin{array}{c} 1 \\ 0 \end{array} \right] \bigcup \left[\begin{array}{c} -1 \\ 0 \end{array} \right] \bigcup \left[\begin{array}{c} 0 \\ 1 \end{array} \right] = \mathbb{R}^2$$

 \Longrightarrow the object position fully controllable in the (x,y) plane by the planar hand.

Laboratory for Perceptual Robotics - College of Information and Computer Sciences

9

UMassAmherst

Grasp Analysis - Form Closure

Definition (Form Closure) - a condition of complete restraint in which any object twist $\in \mathbb{R}^6$ is inconsistent with rigid body assumption for objects and fixed contacts.

form closure can be defined solely in terms of mobility
without specifying contact forces* at all
* form closure does not require friction

Laboratory for Perceptual Robotics – College of Information and Computer Sciences

10

UMassAmherst

Grasp Analysis - Form Closure

- Reuleaux
 - planar bodies require at least four frictionless contacts for form closure in \mathbb{R}^3 , and
 - exceptional surfaces exist for which form closure is impossible given any number of frictionless point contacts.
- Somoff (1897) proved that at least 7 frictionless point contacts are necessary for form closure in \mathbb{R}^6
- Mishra, Schwartz and Sharir (1987) established an upper bound of 6 frictionless point contacts on planar objects with piecewise smooth contours, and 12 for the spatial case (except for Reuleaux's exceptional surfaces).

UMassAmherst

The Grasp Jacobian

$$\begin{bmatrix} v_{1x} \\ v_{1z} \\ v_{2x} \\ v_{2z} \\ v_{3x} \\ v_{3z} \end{bmatrix}_C = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ -1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} v_x \\ v_y \end{bmatrix}_O$$

$$\mathbf{v}_C = \mathbf{G}^T \mathbf{v}_O$$
, where $\mathbf{G} = [\mathbf{v}_1 \ \overline{\mathbf{v}}_1 \ \mathbf{v}_2 \ \overline{\mathbf{v}}_2 \ \mathbf{v}_3 \ \overline{\mathbf{v}}_3]$.

Laboratory for Perceptual Robotics - College of Information and Computer Sciences

11

Laboratory for Perceptual Robotics – College of Information and Computer Sciences

Wrenches and Twists

the power transmitted to the object by a contact is equal to the power generated by the contact forces:

$$\begin{aligned} \mathbf{w}_O^T \mathbf{v}_O &= \mathbf{w}_C^T \mathbf{v}_C \\ \text{but since} \;, \;\; \mathbf{v}_C &= \mathbf{G}^T \mathbf{v}_O, \\ \mathbf{w}_O^T \mathbf{v}_O &= \mathbf{w}_C^T [\mathbf{G}^T \mathbf{v}_O], \\ \mathbf{w}_O^T &= \mathbf{w}_C^T \mathbf{G}^T, \; or \\ \mathbf{w}_O &= \mathbf{G} \mathbf{w}_C. \end{aligned}$$

Laboratory for Perceptual Robotics - College of Information and Computer Sciences

UMassAmherst

Wrenches and Twists

so, from our planar 3-contact example:

$$\mathbf{v}_{C} = \mathbf{G}^{T} \mathbf{v}_{O}, \qquad \begin{bmatrix} v_{1x} \\ v_{1z} \\ v_{2x} \\ v_{3x} \\ v_{3z} \end{bmatrix}_{C} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ -1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} v_{x} \\ v_{y} \end{bmatrix}_{O}$$

$$\mathbf{w}_{O} = \mathbf{G} \mathbf{w}_{C}. \qquad \begin{bmatrix} f_{x} \\ f_{y} \end{bmatrix}_{O} = \begin{bmatrix} 0 & 1 & 0 & -1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} f_{1x} \\ f_{2x} \\ f_{2z} \\ f_{3x} \\ f_{3z} \end{bmatrix}_{C}$$

Laboratory for Perceptual Robotics – College of Information and Computer Sciences

14

UMassAmherst

Contact Types

contact type	geometry	selection matrix \mathbf{H}^T $\mathbf{w}_C = \mathbf{H}^T \boldsymbol{\lambda}$	constraints
frictionless point contact	fingerilp 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\mathbf{w}_C = \left[egin{array}{c} 0 \ 0 \ 1 \ 0 \ 0 \ 0 \end{array} ight] [\lambda_{fz}]$	$\lambda_{fz} \geq 0$
point contact with friction	fingerip friction cone	$\mathbf{w}_{C} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \lambda_{fx} \\ \lambda_{fy} \\ \lambda_{fx} \end{bmatrix}$	$\lambda_{fz} \geq 0$ $\left[\lambda_{fx}^2 + \lambda_{fy}^2\right]^{1/2} \leq \mu \lambda_{fz}$
soft finger	fingerip object surface Friction object surface fingerip object surface object surface object surface object surface object surf	$\mathbf{w}_C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	$\begin{array}{rcl} \lambda_{fz} & \geq & 0 \\ \left[\lambda_{fx}^2 + \lambda_{fy}^2\right]^{1/2} & \leq & \mu \lambda_{fz} \\ \lambda_{mz} & \leq & \gamma \lambda_{fz} \end{array}$

Laboratory for Perceptual Robotics – College of Information and Computer Sciences

UMassAmherst

13

15

Rotating Contact Wrenches

given the rotation matrix ${}_{O}\mathbf{R}_{Ci}$ that transforms vectors in contact frame i into object frame—the block diagonal

$$\overline{\mathbf{R}}_i = \left[egin{array}{c|c} O\mathbf{R}_{Ci} & \mathbf{0} \ \hline \mathbf{0} & O\mathbf{R}_{Ci} \end{array}
ight]$$

applies this rotation to the force and moment components of the contact wrench independently.

Laboratory for Perceptual Robotics – College of Information and Computer Sciences

Translating Contact Wrenches

• the force component of the wrench maps to the same forces in the object frame

Laboratory for Perceptual Robotics - College of Information and Computer Sciences

17

UMassAmherst

Translating Contact Wrenches

• contact frame moments sum with the "couple" $\boldsymbol{\rho} \times \boldsymbol{f}_C$, where $\boldsymbol{\rho} \in \mathbb{R}^3$ is the position vector locating frame \boldsymbol{C} with respect to frame \boldsymbol{O}

Laboratory for Perceptual Robotics – College of Information and Computer Sciences

18

UMassAmherst

Translating Contact Wrenches

$$\mathbf{P}_i = egin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 \ 0 & -
ho_z &
ho_y & 1 & 0 & 0 \
ho_z & 0 & -
ho_x & 0 & 1 & 0 \ -
ho_y &
ho_x & 0 & 0 & 0 & 1 \ \end{bmatrix}$$

the product of matrix \mathbf{P}_i with a wrench at the contact site transforms that wrench into the equivalent wrench at the object frame.

UMassAmherst

Constructing a Grasp Jacobian - Algebraically

$$(\mathbf{w}_O)_i = \mathbf{G}_i \mathbf{w}_{Ci} = \mathbf{G}_i \mathbf{H}_i^T \boldsymbol{\lambda}_{Ci}$$
 contact by contact $(\mathbf{w}_O)_i = \mathbf{G}_i^* \boldsymbol{\lambda}_{Ci}$, where, $\mathbf{G}_i^* = \mathbf{P}_i \overline{\mathbf{R}}_i \mathbf{H}_i^T$.

For an n contact grasp configuration, the grasp Jacobian and effort is written

$$\mathbf{G}^* = [\mathbf{G}_1^* \cdots \mathbf{G}_n^*]$$

and,

$$\boldsymbol{\lambda} = [\boldsymbol{\lambda}_{C1}^T \cdots \boldsymbol{\lambda}_{Cn}^T]^T.$$

Laboratory for Perceptual Robotics - College of Information and Computer Sciences

19

Laboratory for Perceptual Robotics – College of Information and Computer Sciences

Solving for Grasp Forces

assume that unit contact forces, $\boldsymbol{f}_i \in \mathbb{R}^3$, are independent

Laboratory for Perceptual Robotics - College of Information and Computer Sciences

21

UMassAmherst

Solving for Grasp Forces - by inspection

$$\mathbf{w}_O = egin{bmatrix} \mathbf{w}_1 & \mathbf{w}_2 & \mathbf{w}_3 & \mathbf{w}_4 & \mathbf{w}_5 & \mathbf{w}_6 & \mathbf{w}_7 \ 0 & 0 & 1 & 0 & 0 & -1 & 0 \ 1 & 0 & 0 & 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & -1 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & -1 \ 0 & R & 0 & 0 & R & 0 & 0 \ -R & 0 & 0 & R & 0 & 0 & 0 \end{bmatrix} egin{bmatrix} \lambda_1 \ \lambda_2 \ \vdots \ \lambda_7 \ \end{bmatrix} \ \mathbf{w}_O = egin{bmatrix} \mathbf{G}^* & \boldsymbol{\lambda} & \boldsymbol{\lambda$$

Laboratory for Perceptual Robotics - College of Information and Computer Sciences

22

UMassAmherst

Prehensile Grasp Stability - Force Closure

the ability of a contact configuration to suppress random disturbances by modifying grip forces

Definition (Force Closure) - A grasp is force closure if a solution for contact frame wrenches λ exists that complies with contact type constraints such that

$$\mathbf{G}^* \boldsymbol{\lambda} = \mathbf{w}_{dist}$$
 for arbitrary \mathbf{w}_{dist}

 \implies the contact configuration is capable of generating a convex envelope of grasp wrench responses (that contains the origin). prehensile UMassAmherst

Grasp Stability

...stated in another way...

$$\mathbf{w}_O = \mathbf{G}^* \boldsymbol{\lambda}$$

a grasp is force closure (and stabilizable) if and only if \mathbf{G}^* is surjective [Murray, Li, Sastry 1994]

surjection ("onto") - every object frame wrench \mathbf{w}_i is accessible by applying transform $\overline{\mathbf{G}^*}$ to at least one combination of contact frame effort $\boldsymbol{\lambda}$

Grasp Stability

surjection ("onto") - every object frame wrench \mathbf{w}_i is accessible by applying transform $\overline{\mathbf{G}^*}$ to at least one combination of contact frame effort $\boldsymbol{\lambda}$

many-to-one

 $\forall \mathbf{w}_i \in \mathbf{W} \ \exists \boldsymbol{\lambda} \in \boldsymbol{\Lambda} \ such \ that \ \mathbf{w}_i = \mathbf{G}^* \boldsymbol{\lambda}$

Laboratory for Perceptual Robotics – College of Information and Computer Sciences

25

27

UMassAmherst

Solving for Grasp Forces

$$\mathbf{w}_O = \mathbf{G}^* \boldsymbol{\lambda} = \mathbf{G}^* (\boldsymbol{\lambda}_p + \boldsymbol{\kappa}^T \boldsymbol{\lambda}_h)$$

where solutions λ have homogeneous and particular parts,

$$oldsymbol{\lambda} = oldsymbol{\lambda}_p + oldsymbol{\kappa}^T oldsymbol{\lambda}_h$$

 λ_h is the **homogeneous part** of the solution and describes combinations of contact forces that impart zero net force to the object.

$$\mathbf{G}^* oldsymbol{\lambda}_h = \mathbf{0}$$

- \bullet **G*** must be full rank to achieve arbitrary reference wrenches
- \bullet λ must satisfy inequality constraints for unisense normal forces and contact friction.

Laboratory for Perceptual Robotics – College of Information and Computer Sciences

26

UMassAmherst

Solving for Grasp Forces

suppose: grasp forces must support an object load of $-1.0\hat{\boldsymbol{y}}$ [N]

$$M_x = 0 \Rightarrow \lambda_7 = 0$$

UMassAmherst

Solving for Grasp Forces

suppose: grasp forces must support an object load of $-1.0\hat{\boldsymbol{y}}$ [N]

$$F_y = 1 \Rightarrow \lambda_1 + \lambda_4 = 1$$

 $M_z = 0 \Rightarrow -\lambda_1 + \lambda_4 = 0$
 $\Rightarrow \lambda_1 = \lambda_4 = 0.5$
particular solution

 $\lambda_7 = 0$

Laboratory for Perceptual Robotics – College of Information and Computer Sciences

Solving for Grasp Forces

suppose: grasp forces must support an object load of $-1.0\hat{\boldsymbol{y}}$ [N]

$$\lambda_1 = 0.5$$

$$\lambda_4 = 0.5$$

$$F_x = 0 \Rightarrow \lambda_3 - \lambda_6 = 0$$
$$\Rightarrow \lambda_3 = \lambda_6$$

$$\lambda_7 = 0$$

Laboratory for Perceptual Robotics - College of Information and Computer Sciences

UMassAmherst

Solving for Grasp Forces

suppose: grasp forces must support an object load of $-1.0\hat{\boldsymbol{y}}$ [N]

$$\lambda_1 = 0.5$$

$$\lambda_3 = \lambda_6$$

$$\lambda_4 = 0.5$$

$$F_z = 0 \Rightarrow \lambda_2 - \lambda_5 = 0$$

$$M_y = 0 \Rightarrow \lambda_2 + \lambda_5 = 0$$

$$\Rightarrow \lambda_2 = \lambda_5 = 0$$

$$\lambda_7 = 0$$

Laboratory for Perceptual Robotics – College of Information and Computer Sciences

30

UMassAmherst

Solving for Grasp Forces

suppose: grasp forces must support an object load of $-1.0\hat{\boldsymbol{y}}$ [N]

$$\begin{array}{c} \lambda_1=0.5\\ \lambda_3=\lambda_6\\ \lambda_4=0.5\\ \lambda_2=\lambda_5=0\\ \lambda_7=0 \end{array} \qquad \begin{array}{c} \text{frictional constraints}\\ \lambda_1\leq\mu\lambda_3\\ 0.5\leq(0.2)\lambda_3\\ \lambda_3\geq2.5 \end{array}$$

Laboratory for Perceptual Robotics – College of Information and Computer Sciences

UMassAmherst.

29

31

Solving for Grasp Forces

$$\lambda_1 = 0.5$$
 $\lambda_3 = \lambda_6$
 $\lambda_4 = 0.5$
 $\lambda_2 = \lambda_5 = 0$
 $\lambda_1 \leq \mu \lambda_3$
 $0.5 \leq (0.2)\lambda_3$
 $\lambda_3 \geq 2.5$

$$\lambda = \lambda_p + \kappa^T \lambda_h = \begin{bmatrix} 0.5 & 0 & 0 & 0.5 & 0 & 0 & 0 \end{bmatrix}_p^T + \kappa \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}_h^T$$

and, $\kappa \geq 2.5$ satisfies frictional constraints

automated techniques based on mathematical programming are used to solve these systems subject to contact type constraints

Laboratory for Perceptual Robotics - College of Information and Computer Sciences

Force Closure Revisited

- 1. The grasped object is in quasistatic equilibrium, there are no net forces or moments,
- 2. all forces are applied within the cone of friction so that there is no slippage, and,
- 3. an externally applied force can be resisted by finger forces with a finite and controllable deflection.

Laboratory for Perceptual Robotics - College of Information and Computer Sciences

33

35

UMassAmherst

Grasp Synthesis

grasp analysis vs. grasp synthesis

once we have a grasp geometry, grasp analysis provides a grasp force solution

but, how is a grasp geometry determined?

Laboratory for Perceptual Robotics – College of Information and Computer Sciences

34

UMassAmherst

Closed-Loop, Sensor-Driven Grasp Control

$$\Phi = \boldsymbol{\rho}^T \mathbf{M} \boldsymbol{\rho}$$

$$= \left(\frac{1}{k} \sum_{i=1}^k \boldsymbol{\omega}_i\right)^T \mathbf{M} \left(\frac{1}{k} \sum_{i=1}^k \boldsymbol{\omega}_i\right)$$

the control Jacobian, J_c , is the partial of φ with respect to contact coordinates q

Laboratory for Perceptual Robotics - College of Information and Computer Sciences

I Mass Amherst

Navigation Function - Grasp Control

1. The grasped object is in quasistatic equilibrium, there are no net forces or moments,

Laboratory for Perceptual Robotics – College of Information and Computer Sciences