
Basics: Gaussian Functions
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Optimal Estimation

sensor feedback is subject to noise and imprecision

suppose that the ball is stationary at some point along the xB axis
and that stereo observations of coordinate x are drawn from the
probability distribution illustrated.

x

y

given n independent measurements,

{zi : i = 1, . . . , n},
each subject to additive zero-mean
Gaussian noise

vi ∼ N(0, ri),

• the optimal estimate, x̂, is constructed as a weighted sum of
individual (noisey) measurements x̂ = k1z1 + k2z2

• weights are chosen to minimize the expected squared error
(variance) of the estimate.
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Optimal Estimation

two independent measurements:

z1 = x + v1 z2 = x + v2

x̂ = k1z1 + k2z2.

we require that the estimator is unbiased ⇐⇒ k1 and k2 are
independent of x and the expected value of the estimation error
is zero,

E[x̃] = E[x̂− x] = 0

therefore E[(k1(x + v1) + k2(x + v2))− x] = 0

and since E[x] = x and E[vi] = 0, this relation requires that

k2 = 1− k1.
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Optimal Estimation

the optimal filter gain (k1) yields minimum squared error1

E[x̃2] = k21r1 + (1− k1)
2r2

where ri is the observation variance for measurement i.

we find the value for k1 that minimizes variance:

dE[x̃2]

dk1
= 2k1r1 − 2(1− k1)r2 = 0

k1 =
r2

r1+r2

1which is equivalent to minimizing the estimate variance.
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Optimal Estimation

Now, the optimal estimate is:

x̂ =
r2

r1 + r2
z1 +

r1
r1 + r2

z2

=

1
r1

1
r1
+ 1

r2

z1 +

1
r2

1
r1
+ 1

r2

z2,

and the expected squared estimation error (the estimate variance)
is:

E[x̃2] = s =

[

1

r1
+

1

r2

]−1

which is generalized to k observations in a straightforward manner.
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Optimal Estimation

for k observations, the optimal (least squares) estimate and the
estimate variance becomes:

x̂k =

∑k
i=1

zi
ri

∑k
i=1

1
ri

sk =

[

k
∑

i=1

1

ri

]−1

Finally, we can state the filter in the recursive form:

x̂k =

1
sk−1

1
sk−1

+ 1
rk

x̂k−1 +

1
rk

1
sk−1

+ 1
rk

zk

sk =

[

1

sk−1
+

1

rk

]−1
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Recursive Optimal Estimation -
Tracking Moving Objects ∈ R

n

The optimal combination of measurements, {zi : i = 1, k}, with
associated covariance Ri is determined by weighting observations

x̂k = Sk

k
∑

i=1

R−1
i zi

where the covariance of the estimate is computed from

Sk =

[

k
∑

i=1

R−1
i

]−1

The recursive form of the multi-dimensional estimator becomes:

x̂k+1 = S−1
k

[

S−1
k +R−1

k

]−1
x̂k +R−1

k

[

S−1
k +R−1

k

]−1
zk+1
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Recursive Optimal Estimation -
Tracking Moving Objects ∈ R

n

x

y

x̂
−
k =

[

x̂ ŷ ˙̂x ˙̂y
]T

k
= Φkx̂

+
k−1 +wk−1 wk ∼ N(0,Qk)

zk = Hkx̂k + vk vk ∼ N(0,Rk)
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The Kalman Filter

the “process” model

x̂k = Φk−1x̂k−1 +wk−1 , or

x̂k = Ak−1x̂k−1 +Bk−1uk−1 +wk−1

wk−1 ∼ N(0,Qk−1)

the “sensor” model

zk = Hkx̂k + vk

vk ∼ N(0,Rk)

The Kalman filter is implemented in two stages:

state prediction:

x̂
−
k = Ak−1x̂

+
k−1 +Bk−1uk−1

P−
k = Ak−1P

+
k−1A

T
k−1 +Qk−1

sensor prediction:

Kk = P−
kH

T
k

[

HkP
−
kH

T
k +Rk

]−1

x̂
+
k = x̂

−
k +Kk

[

zk −Hkx̂
−
k

]

P+
k = [I−KkHk]P

−
k
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The Kalman Filter

P

x̂
+
k−1

prior

P

x̂
−
k

forward state prediction

x̂
−

k
= Φx̂

+

k−1

P−

k
= ΦP+

k−1
ΦT +Qk−1

P

ẑk

observation

zk, Rk

Kk = P−

k
HT

k

[

HkP
−

k
HT

k
+Rk

]

−1

P

x̂
+
k

posterior

x̂
+

k
= x̂

−

k
+Kk

[

zk −Hkx̂
−

k

]

P+

k
= [I−KkHk]P

−

k
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A Kalman Filter for Roger

y

x

v = [0 0.5]T

t = 0t = 8
[x y] = [3 −2][x y] = [3 2]

The “Process” Model

x̂ =









x̂
ŷ
˙̂x
˙̂y









x−k = x+k−1 + ẋ+k−1∆t + (1/2)(ux)k−1∆t2

y−k = y+k−1 + ẏ+k−1∆t + (1/2)(uy)k−1∆t2

ẋ−k = ẋ+k−1 + (ux)k−1∆t

ẏ−k = ẏ+k−1 + (uy)k−1∆t
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A Kalman Filter for Roger

The “Process” Model

x̂ =









x̂
ŷ
˙̂x
˙̂y









x−k = x+k−1 + ẋ+k−1∆t + (1/2)(ux)k−1∆t2

y−k = y+k−1 + ẏ+k−1∆t + (1/2)(uy)k−1∆t2

ẋ−k = ẋ+k−1 + (ux)k−1∆t

ẏ−k = ẏ+k−1 + (uy)k−1∆t

x̂
−
k = A x̂

+
k−1 + B uk−1









x̂
ŷ
˙̂x
˙̂y









−

k

=









1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

















x̂
ŷ
˙̂x
˙̂y









+

k−1

+









∆t2/2 0
0 ∆t2/2
∆t 0
0 ∆t









[

ux
uy

]

k−1

consider the process with no control inputs (i.e. u = 0)
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A Kalman Filter for Roger

The “Process” Model

the process model is subject to noise w ∼ N(0,Qk)

how is covariance matrix Qk estimated?

consider isotropic acceleration disturbances udist

Qk ≈ σ2
proc BBT = σ2

proc











∆t4

4 0 ∆t3

2 0

0 ∆t4

4 0 ∆t3

2
∆t3

2 0 ∆t2 0

0 ∆t3

2 0 ∆t2











which is constant for a fixed sample rate
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A Kalman Filter for Roger

The “Sensor” Model

ẑk = Hk x̂
−
k vk ∼ N(0,Rk)

[

zx
zy

]

k

=

[

1 0 0 0
0 1 0 0

]









x
y
ẋ
ẏ









−

k

[

σ2
x 0
0 σ2

y

]

or, maybe JJT?
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A Kalman Filter for Roger

y

x

v = [0 0.5]T

t = 0t = 8
[x y] = [3 −2][x y] = [3 2]

x

y

ẋ

ẏ

time −→
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