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Abstract

Autonomous robots demand complex behavior to deal
with unstructured environments. To meet these expecta-
tions, a robot needs to address a suite of problems asso-
ciated with long term knowledge acquisition, represen-
tation, and execution in the presence of partial informa-
tion. In this paper, we address these issues by the acqui-
sition of broad, domain general skills using an intrin-
sically motivated reward function. We show how these
skills can be represented compactly and used hierarchi-
cally to obtain complex manipulation skills. We further
present a Bayesian model using the learned skills to
model objects in the world, in terms of the actions they
afford. We argue that our knowledge representation al-
lows a robot to both predict the dynamics of objects in
the world as well as recognize them.

1 Introduction
Robot programming traditionally involves specific sensory
and motor sequences learned or coded in for each use case,
with little or no transfer from case to case. This is due to
the lack of a knowledge representation that supports transfer
between contexts. Representations that are useful for contin-
uous control of robotic systems and discrete, symbolic rea-
soning presents a significant challenge for integrating rea-
soning and control research in robotics. Ideally, these areas
of research should be able to inform one other.

In this paper, we present a solution to this representational
discontinuity by having the agent build a functional model
of the world in terms of sensorimotor programs and uses
it to create efficient behavioral contingencies for novel run-
time situations. The sensorimotor programs - schemas are
acquired using an intrinsic reward function for generalizable
control programs (Hart 2009a). The schemas are then com-
posed hierarchically to learn complicated motor programs
for grasping and manipulation. A Bayesian framework for
modeling control knowledge in the environment is then pre-
sented. We show how the model provides a functional de-
scription of objects and hence can be used for both object
recognition as well as action selection.
Section 2 describes the framework for acquiring closed loop
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programs by using an intrinsically motivated reward func-
tion. The mathematical framework for representing these
motor programs (and compositions of them) is also pre-
sented. Section 3 shows how these control programs can be
used by the robot to organize knowledge about objects in
the world. Section 4 presents an algorithm that describes the
utility of this representation as a predictive model for action
selection. Section 5 presents a discussion regarding exten-
sions to the current implementation including learning rela-
tionships between objects.

2 Control Programs - SEARCHTRACK
Primitive control actions, c ≡ φ|στ are closed-loop feedback
controllers that are constructed by combining potential func-
tions, φ, with feedback signals, σ, and motor resources, τ
(〈σ ⊆ Ωσ, φ ∈ Ωφ, τ ⊆ Ωτ 〉). The sensitivity of the po-
tential to changes in the motor variables provides a control
gradient that is used to derive reference inputs (uτ ) for syn-
ergies of motor units defined by subsets, τ ⊆ Ωτ , of the
robot’s effector resources. The error dynamics created when
the controller interacts with the environment provides a nat-
ural discrete abstraction of the underlying continuous state
space (Coelho and Grupen 1997). In this work, we employ
a four level discrete logic, p(c) ∈ {X,−, 0, 1}, where ‘X’
indicates unknown control state, ‘−’ indicates that the refer-
ence signal is not available, ‘0’ indicates the transient control
response and ‘1’ denotes convergence/quiescence. A collec-
tion of n distinct primitive control actions forms a discrete
state space sk = [p1, · · · , pn]k ∈ S.

There are two distinct types of actions that share poten-
tial functions and effector resources, but are distinguished
by the source of their input signals : TRACK and SEARCH. A
TRACK action uses effectors, τ , to track a reference signal,
σ. A convergence event (0 → 1) is considered rewarding
to the learning agent if the reference stimuli being tracked
belongs to the external environment (Hart 2009b). This pro-
vides a computational approach to learning concepts anal-
ogous to Gibsonian affordances in which the potential for
action is explicitly modeled (Gibson 1977). We say that the
environment affords controller ci when this control action
causes a 0→ 1 state transition.

A SEARCH action “orients” the sensorimotor resources
to discover trackable affordances. The search actions are
of the form φ|σ̃τ (sharing potential functions and effector



resources with their TRACK counterparts), deriving their
input, σ̃ by sampling from probabilistic models describ-
ing distributions over effector reference values(uτ ) where
rewarding TRACKing actions have been discovered in the
past, p(φ|στ ) = 1. The effector reference values are learned
relative to the spatial attributes, f of the trackable fea-
ture (position, orientation, scale). Initially the distribution
Pr(uτ |p(φ|στ ) = 1) is uniform; however, as it is updated
over the course of many learning episodes, this distribution
will reflect the long term statistics of the run-time environ-
ment.

Sequential programs can be assembled out of control
primitives by using Reinforcement Learning (RL) (Sutton
and Barto 1998). Hart (Hart 2009a) showed that restricting
the sensory and effector resources to which the robot has ac-
cess can lead to the acquisition of new and interesting behav-
ior. In the simplest context, the robot was restricted to pro-
prioceptive feedback from the pan/tilt head and large scale
motion cues arising from a single camera. Effector resources
were likewise restricted to motor controllers associated with
the pan and tilt axes of the visual system. Under this devel-
opmental context, the control basis yields a small variety of
SEARCH and TRACK actions,

A = {φ|(̃u,v)pt , φ|(u,v)pt , (φ|(̃u,v)pt / φ|(u,v)pt ),

(φ|(u,v)pt / φ|(̃u,v)pt )}
where pt designates the pan and tilt axes of the head as a sen-
sor (in the superscript position) or an effector (as a subscript)
and (u, v) designates the centroid of the motion cue relative
to the image center. The shorthand, c2 /c1 (read “c2 subject-
to c1”) is used in the following to describe priority relations
in concurrent control actions achieved by projecting subor-
dinate actions into the nullspace of superior actions (Naka-
mura, Hanafusa, and Yoshikawa 1987). The only rewarding
event that can be generated by these set of actions is the con-
vergence of the TRACK-ing controller φ|(u,v)pt . Therefore, the
developmental context is designed to teach the robot how to
find and track motion features.

The state space defined by this developmental stage is
the vector of controller states q = [psearch ptrack]. Fig-
ure 1(a) shows the SEARCHTRACK schema acquired af-
ter 25 learning trials in this developmental context us-
ing Q-learning. In Figure 1(a), concurrent SEARCH and
TRACK control actions are permitted and the resulting
SEARCHTRACK policy begins by attempting to concur-
rently SEARCH for and TRACK a motion cue. If a motion cue
exists in the signal, the policy attempts to continue TRACK-
ing. If no target is immediately available, the policy selects
a SEARCH behavior in which it samples new pan/tilt config-
urations from the distribution in Figure 1(b) in a loop until
the target stimulus is found at which point, the policy tracks
the features and receives reward on the 0 → 1 transition.
The shorthand, Φ|στ is used to describe a SEARCHTRACK
program for tracking a signal, σ using effector resources, τ .

Control programs (SEARCHTRACK schema) can further
be sequenced to generate complex programs that can find
and track multiple stimuli in the environment. Hart (Hart,
Sen, and Grupen 2008) presented a detailed description
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Figure 16.2 Panel (a) shows the image from Dexter’s left camera while tracking a motion cue. Panel (b)
shows the resulting distribution Pr(reward(motionφtrack
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Figure 16.3 Action schemas that represent SearchTrack behavior in terms of abstract state
[ psearch ptrack ]. A new Search goal is sampled whenever Search is executed from states for which
psearch = (X ||1) (designated by small circles). The schema in panel (a) uses only primitive control actions,
in panel (b) co-articulated actions are permitted as well (S and T are shorthand for Search and Track,
respectively). Transitions indicated in red receive the intrinsic affordance discovery reward. The abstraction
in panel (c) summarizes the net behavior of SearchTrack using the same abstraction applied to primitive
controllers.
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Figure 1: Action schemas that represent SEARCHTRACK be-
havior in terms of state [psearch ptrack]. A new SEARCH
goal is sampled whenever SEARCH is executed from states
for which psearch = (X||1) (designated by small circles).
The schema in panel (a) uses co-articulated action. Panel (b)
shows the resulting distribution Pr(uτ |p(φ|στ ) = 1) after 50
presentations.

of the various manipulation programs (touching, grasping,
picking up, placing and inspecting objects) that can be
learned in a hierarchical fashion from the previously ac-
quired control programs. All of these programs can be
viewed abstractly as a sequence of SEARCHTRACK pro-
grams that can be used to find and track independent, generic
features : visual; tactile; invariants in many sensor signals
(e.g., grasping, pick-and-place and manipulation tasks), and
each serves as an orienting action for detecting dependent
signals. Figure 2 shows a hierarchical schema learned by the
robot to reliably track a reference force using its end effec-
tor. The learned program REACHGRASP involves concur-
rently tracking multiple visual stimuli (indicated by the ‘+’
symbol for the first schema) followed by a SEARCHTRACK
schema which tracks forces using its end effector. In this
hierarchical schema, the Cartesian feature tracker becomes
part of the search behavior that orients the robot to get more
reward. Thus schemas can be used hierarchically as a tem-
porally extended action if it leads to more reward.

The use of the term “schema” was proposed by the Ger-
man philosopher Immanuel Kant (Kant 1965) as a way of
mapping concepts to percepts over categories of objects. He
talked about grounding concepts in sensations that would
lend support to reasoning and intuition. Jean Piaget sug-
gested that schema are formed to meet new demands through
a process of accommodation and that existing schema re-
spond to new experiences through assimilation (Piaget
1952). Computational schema have been demonstrated in
rule-based systems (Nilsson 1994) and empirical cause-and-
effect systems in discrete domains (Drescher 1991), as well



Figure 2: Sequential programs can be learned by sequenc-
ing a set of previously learned SEARCHTRACK schemas.
The robot learns how to “grasp” by sequencing two dif-
ferent SEARCHTRACK schemas that establishes spatial fea-
tures followed by invariants in the force domain associated
with prehensile behavior. The ‘+’ sign for the first schema
indicates that the robot might need to track multiple differ-
ent spatial features before it can reliably track a force. The
shorthand REACHGRASP will be used to describe the grasp
schema.

as continuous domains that can be explored through active
learning (Mugan and Kuipers 2007). Lyons (Lyons 1986)
presented a schema theory approach for designing a formal
language for robot programming called Robot Schema (RS).
In this approach, perceptual and motor schemas are com-
bined into coordinated control programs (Arbib 1995).

Our computational framework acquires programs for con-
trolling interaction with the environment and manages re-
dundant sensory and motor resources to discover and main-
tain intrinsically rewarding relationships in dynamic envi-
ronments. The acquired control programs and their long
term statistics represent a domain general way of interact-
ing with stimuli in the environment. The schemas capture
common sense knowledge acquired by the robot. The envi-
ronment, however, presents important kinds of structure in
terms of objects — sets of spatially related co-affordances.
In the next section, a Bayesian framework for acquiring
these domain specific knowledge structures in terms of dis-
tribution over SEARCHTRACK programs is presented.

3 Control Affordances in the Environment -
Objects

Representing knowledge about the world in terms of affor-
dances, provides a powerful and computationally efficient
way for an agent to encode its experiences. Since the for-
mulation of the theory of affordances by J. J. Gibson (Gib-
son 1977), a great deal of work has been done to formalize
this concept in a manner that can be modeled computation-
ally. Specifically, Stoytchev (Stoytchev 2005b), (Stoytchev
2005a) and Fitzpatrick (Fitzpatrick et al. 2003) showed that
affordance-related concepts can be used to differentiate ob-
jects in the course of interaction with the environment. In
this work, we propose the use of distinct patterns of control
affordances as a representation for objects with which we
plan sensory and motor interactions. We describe an object
with id i as a spatial distribution over the state of Ni-control
affordances. This representation defines an affordance, given

Figure 3: A Bayesian network model G representing ob-
jects O1, · · · , OM as a spatial distribution over N control
affordances. The random variables pi∗ model the state of the
SEARCHTRACK schemas. fi∗ models the position, orienta-
tion and scale of a feature in the world frame as observed by
the robot. rjk models the relative distance, orientation and
scale between two trackable actions. This variable encodes
the spatial dependencies of various affordances.

the probable existence of one or more objects, according to
not only its sensor signal σ and effector τ , but also by its
location, orientation, and scale with respect to other affor-
dances.

Figure 3 is a Bayesian network that encodes the logical
dependencies between the variables of the environment af-
fordance model. Each of the M modeled objects is repre-
sented by a Bernoulli random variable Oi : i = 1, · · · ,M
denoting the probability that an object exists in the current
environment. For each object, there exists Ni affordances
that have a non-zero probability of occurring. Each of these
affordances is represented by a multinomial random vari-
able pi∗ describing the stable dynamics of each associated
SEARCHTRACK action. This spatial region is modeled by
fi∗ as a spatial blob with mean position, x, y, z, orientation
of the principal axis, θ and length of the principal axis, sc.
The spatial relationships between control affordances - rela-
tive distance, orientation and scale are modeled by the nodes
rjk : j = 1, · · · , Ni, k = 1, · · · , Ni, j 6= k. The resulting
model provides a generative manner of describing objects,
affordances, and the relationships between them. Utilizing
past experience encoded as priors, this model is able to aid
in accomplishing new tasks with the same or similar objects.

One of the biggest advantages of representing objects in
this manner is that it allows a robot to interact with its envi-
ronment, observe the effects of these interactions, and then
to make predictions about future actions while incorporat-
ing task specific constraints. For instance, given an object
recognition task with observations Z = {zp, zf} where
zp ⊆ p(Φ|στ ), zf ⊆ f , the distribution over likely objects
can be found by computing Pr(Oi|Z). In addition, it is pos-



sible to make decisions concerning control actions the robot
can execute (or not execute) on an object (Pr(pj |Z)). In the
next section, we briefly describe how the affordance-based
representation can be used by a robot to intelligently select
actions to achieve a task.

4 Task Specific Action Selection
Ideally the goals for an action, fij , can be sampled from
the Bayesian model given the environment affordance model
and observations. However, in the presence of partial infor-
mation, choosing an action given that it may be expensive or
destructive (w.r.t. sensor measurements) requires safeguards
to ensure that the robot chooses the next action that will op-
timally lead towards successfully completing its intended
task. The procedure for taking such an action (ag) is de-
scribed in Algorithm 1.

In the beginning, when the robot hasn’t discovered any
affordances in its environment, the only evidence (E) avail-
able is the priors over objects from the trained model. The
inference algorithm proceeds by selecting actions that lead
to a maximum reduction in uncertainty over the distribution
of task goals. This is achieved by computing the mutual in-
formation between the goals and other possible affordances
given the evidence. The action which is predicted to have
the maximal mutual information is the one that the robot ex-
ecutes next to optimally reduce its uncertainty over the goal
affordance. This process is repeated until the uncertainty in
the goal affordance is low enough for the robot to try exe-
cuting the goal action.

Algorithm 1 TASKGOAL(ag, ε, E)
1: Evidence, e← {E}
2: Discovered Affordances, A← {}
3: repeat
4: Compute posterior over goal region given evidence of

affordances, Pr(fg|e, pg)
5: Compute Entropy over goal affordance given evi-

dence, Hg ← H(fg|e, pg)
6: if Hg < ε then
7: Execute ag with fg ∼ Pr(fg|e, pg)
8: e← e

⋃
p(ag)

⋃
fg

9: else
10: for all ai /∈ A

⋃
ag do

11: Compute posterior of possible regions of affor-
dance, Pr(fi|e, pi)

12: Compute mutual Information, Iai
between the

goal and affordance ai, I((fg|e, pg); (fi|e, pi))
13: end for
14: Select the action with maximum mutual informa-

tion, anext = arg maxj Iaj

15: Execute action, anext.
16: Make observation, fnext ←< x, y, z, θ, sc >
17: e← e

⋃
p(anext)

⋃
fnext

18: A← A
⋃
anext

19: end if
20: until p(ag) = 1 {Goal Action Succeeds}

Example: Radio

As a proof of concept, we describe here a grasping task for a
radio given an empirically derived environment affordance
model containing only a single object, the radio. In Figure
4, the full radio model can be seen. The affordances that we
chose to represent were the yellow knob (in the center), the
black antenna, the green bottom piece, the bounding box,
and reach goals for a grasp oriented along the principal axis
of the object. We assume in this instance prior information
indicating that this object is on a table or that the object was
only seen on a table during training implying that the model
is ignorant of grasping points that would be impossible while
laying on a table. Additionally, the robot is assumed to only
have knowledge of one type of grasp, which aligns the hand
to the principal axis of the object.

Figure 4: 3D model visualization of radio model Gradio,
red = REACHGRASP, green = (visual) SEARCHTRACK
green, yellow = (visual) SEARCHTRACK yellow, black =
(visual) SEARCHTRACK black, blue = (visual) SEARCH-
TRACK bounding box

Figure 5 shows the resulting posterior of grasp goals,
Pr(fg|e, pg) after one round of action selection in Algo-
rithm 1. In the first round, the algorithm chooses the (visual)
SEARCHTRACK green action because the predicted resul-
tant feature provides the maximum decrease in uncertainty
of the grasping posterior. It is interesting to note here the
dilation occurring to the reach goal distribution, pictured in
red, for each possible affordance. Because the prior for each
affordance is modeled with a multivariate Gaussian, there
is an inherent symmetry introduced. This results in bilateral
symmetry in the majority of cases, but because of the ambi-
guity with respect to orientation present in the round knob,
pictured in yellow, this case results in a rotational symme-
try about the centroid of the knob. This will be true for any
object that does not have well defined principal axes.

Figure 6 shows the results after a second round of action
selection. After combining the new evidence obtained from
the execution of this action, the uncertainty in the goal affor-
dance goes below the desired threshold.



Figure 5: Visualization of the grasp posterior (red) given the
environment model with the radio object and the existence
of each other affordance (Panel a: bounding box, Panel b:
green bottom piece, Panel c: black antenna, Panel d: knob)
as evidence.

Figure 6: Visualization of the grasp posterior given the envi-
ronment model and one round of action selection.

5 Discussion
The above Bayesian formulation of objects as spatially
structured schemas provides a powerful mechanism for au-
tonomous learning and planning for a robot performing ma-
nipulation tasks. However, until now, we have only consid-
ered the case where one object is present in the environment.
This is almost always not the case. For example, to grasp a
tool lying on a table, the robot needs to interact with two
objects - tool and table. While each object in isolation can
be described by their affordance model, the model distribu-
tions change when objects are interacting (or maintaining
certain spatial relationships) with one another. An action that
reaches for the tool lying on the table cannot choose any
grasp goal on the tool that is in contact with the table. The
presented Bayesian formulation provides a principled way
of re-computing these distributions based on observations
that are consistent with multiple objects.

The distribution, Pr(fij |pij , Oi), which describes a fea-
ture in the robot’s sensor space, changes in the presence of
other objects. Given a reference, fij for a schema, Φ|στ af-

forded by object, Oi, the posterior of that reference can be
recomputed to reduce the probability in locations where this
action is afforded by one object but not by the other.

6 Conclusions
In this paper, we introduced a knowledge representation
framework that organizes knowledge about objects in terms
of long term statistics of controllable interaction. We showed
how a robot can acquire broad domain general schemas by
using an intrinsic reward function that favors finding new af-
fordances in the environment. These schemas are reused to
learn complex manipulation skills and provide a basis set for
modeling objects in the environment as a distribution over
spatially located co-affordances. We provided some prelim-
inary results of using this approach for modeling objects and
using these models for object recognition and action selec-
tion. We are presently working on applying these ideas on a
real robot.
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