Log-Space Harmonic Function Path Planning

Kyle Hollins Wray, Dirk Ruiken, Roderic A. Grupen, and Shlomo Zilberstein

Abstract— We propose a log-space solution for robotic path
planning with harmonic functions that solves the long-standing
numerical precision problem. We prove that this algorithm: (1)
performs the correct computations in log-space, (2) returns the
true equivalent path using the log-space mapping, and (3) has a
strong error bound given its convergence criterion. We evaluate
the algorithm on 7 problem domains. A Graphics Processing
Unit (GPU) implementation is also shown to greatly improve
performance. We also provide an open source library entitled
epic with extensive ROS support and demonstrate this method
on a real humanoid robot: the uBot-6. Experiments demonstrate
that the log-space solution rapidly produces smooth obstacle-
avoiding trajectories, and supports planning in exponentially
larger real-world robotic applications.

I. INTRODUCTION

Path planning is a critical component of most robotic sys-
tems but is quite challenging to perform in real-time robotic
scenarios [1]. Applications include autonomous cars [2],
smart wheelchairs [3], and unmanned aerial vehicles [4]. A
number of techniques have emerged, each with their own
benefits and drawbacks. Rapidly-exploring Random Trees
(RRT) [5] randomly construct trees following any general
state transition, including any non-holonomic constraints.
Probabilistic Roadmaps (PRMs) [6] begin by randomly se-
lecting points to create a collision-free graph. Then, it enters
a query phase that connects the start and goal locations.
Eventually it finds the fastest route within the final graph.
Connolly and Grupen [7] proposed a prominent potential
field method that employs solutions to Laplace’s equation
called harmonic functions. Specifically, these are solutions
over a grid of a bounded region. The method produces an
optimal smooth flow, avoiding obstacles as the robot moves
to goal states (i.e., minimizes “hitting probability”). Impor-
tantly, it does not suffer from local minima, unlike other
potential field methods [7]. There are two main issues with
harmonic functions, both regarding scalability: (1) numerical
precision issues, and (2) computational complexity.

Rosell and Iniguez [9] scale harmonic functions using
probabilistic cell decomposition, so that only a subset of
the cells are sampled and therefore less computation occurs.
They reduced the effective number of cells by up to 80%
within 2-dimensional C-space. Aarno et al. [10] merge PRMs
with harmonic functions to alleviate the issue with PRMs
(shared by RRT too) failing to find paths through the more

This work was supported in part by NASA (grant NASA-GCT-
NNX12AR16A) and the NSF (grant I1IS-1405550). Any opinions, findings,
and conclusions expressed in this material are those of the author(s) and do
not necessarily reflect the views of the NASA or the NSF.

College of Information and Computer Sciences, University of Mas-
sachusetts, Amherst, MA 01002, USA. Emails: {wray, ruiken,
grupen, shlomo}@cs.umass.edu

Fig. 1. Harmonic function in Willow Garage’s office [8] (1397-by-
1213) with obstacles (black) and free space (white). Example streamlines
(green) show the log-space Gauss-Seidel GPU implementation’s solution.
The algorithm is complete, and returns a valid path from all locations.

narrow spaces between obstacles. Garrido et al. [11] use
a finite element method, instead of the standard finite dif-
ference method, to better handle complex obstacles. Torres-
Huitzil et al. [12] attempted to address precision problem
by incrementally using higher precisions (e.g., converge in
single-precision, then use double, etc.). The experiments we
present demonstrate simply using higher precision does not
solve the problem. Scherer et al. [13] successfully imple-
mented harmonic path planning for obstacle avoidance on an
autonomous helicopter; however, due to speed and numerical
precision issues, they used a very small discretization (i.e.,
(128,128, 64) in size). All of these approaches, however, will
still suffer from numerical precision issues (described below)
using harmonic functions, even for modestly-sized spaces.

The key numerical precision issue stems from the common
prevalence of obstacles, whose fixed value is 1, and sparsity
of goals, whose fixed value is 0. The free spaces average
neighbors until convergence; therefore, most of their values
are very close to 1, resulting in problems with floating-point
addition [14]. The proposed log-space algorithm solves this
issue, allowing for exponentially larger problem sizes to be
solved (Figure 1). Specifically, it exploits the log-sum-exp
algorithm to perform this near 1 neighbor averaging in a
special log-space without precision issues. To the best of
our knowledge, no one has proposed this before. Though
log-sum-exp has been used to solve different issues found in
ad hoc network routing with Laplace’s equation [15], this is
a specific issue and solution for robot path planning.

The primary contributions of this paper are: (1) the log-
space algorithm, (2) three propositions regarding its cor-
rectness and convergence, (3) a full suite of experiments
comparing the algorithm with the original approach, and (4)
fully developed Robot Operating System (ROS) support as
both a standard ros_nav plugin and a custom anytime path
planner ROS node, demonstrated on a robot: the uBot-6 [16].

Section II introduces the formal notions of potential fields
and harmonic functions. Section III presents the algorithm
that maps the problem to log-space. This includes three
formal proofs regarding correctness and convergence. Sec-
tion IV describes a GPU implementation of the log-space
algorithm and demonstrates that it allows us to solve ex-
ponentially larger problems. Section V concludes with final
thoughts.

II. POTENTIAL FIELD PATH PLANNING

Potential field methods describe the path planning prob-
lem borrowing notions from physics (e.g., fluid dynamics).
Specifically, they assume that all obstacles have a high
potential, and the goal state has a low (or simply zero) poten-
tial. Solving the corresponding partial differential equation
(PDE) will yield a flow which maximizes obstacle avoidance
while traveling towards a goal. The trade-off between these
two competing objectives produces solutions which instead
minimize the probability of hitting an obstacle (i.e., “hitting
probability”) [17]. The resulting path is smooth and natural.

A. Solutions to Laplace’s Equation

We focus on the solutions to Laplace’s equation, which are
harmonic functions. Laplace’s equation is a particular form
of Poisson’s equation with an equality of zero. Formally, we
have twice continuously differentiable function ¢ : Q@ — R
defined on n-dimensional region {2 = R™ with boundary o).
Laplace’s equation is the partial differential equation (PDE):

2, N\ %0
v = ; 2 =0
The solutions to Laplace’s equation are called harmonic
functions.

Let m € N™ be the dimension sizes for a n-dimensional
grid defined as X = {x e N"|Vie {1,...,n},z; < m;}. Let
grid X correspond to the bounded discrete regular samplings
on). Let function u : X — R be defined such that u(x) =
¢(w), Vi e {1,...,n}, such that x € X is the corresponding
regular sample (“indexes”) for w €). We apply Taylor series
approximation, use Dirichlet boundary conditions, ¢(w) = 1
for obstacles, ¢(w) = 0 for goals, and apply finite (central)
difference to solve for each point on 2 sampled following
grid X. For brevity, let O € X be the set of obstacles, and
G < X be the set of goals. This yields:

n
0 =v2p(w) = (Z u(x; 1,X_Z‘)> —2n - u(x)
i=1
with x_; = [#1,...,2i1,Tis1,---,2n]%, such that
u(x,x_;) denotes u([z1, .. x,]7T). This
produces a system of linear equations with O(my - --my,)

i1, T, Tt 1y - -

unknowns. This is sparse so we use iterative methods such
as Gauss-Seidel or Successive Over Relaxation (SOR).

SOR operates under a particular ordering of the equations
in the system of linear equations (for the finite difference
method). It uses values that are computed for the current
iteration, providing overlap that greatly reduces the number
of iterations, as compared to using simpler orderings. We
assume a red-black ordering, creating an n-dimensional
“checkerboard” pattern for red-labeled cells R < X and
black-labeled cells B — X. Each iteration, we first update
red cells then black cells, alternating between the two.
The benefit to this SOR ordering is that we can perfectly
parallelize each update. The update equation at iteration ¢,
for each free space cell x € R (¢t even) or x € B (¢ odd) is:

t+1 _ t A Y ti.)

w(x) = (1-Nu'(x)+ o™ z;u (x; £1,x—;) (1)
with relaxation parameter A that enables faster convergence
with A > 1. Boundary cells O and G have fixed values of 1
and 0, respectively. If A > 1, it cannot be used as an anytime
algorithm because it will produce poor initial solutions due
to the relaxation parameter causing oscillations to overshoot
the true value. The slightly more “well-behaved” algorithm
is known as Gauss-Seidel with \ = 1.

B. Streamlines

Solving the system of linear equations produces a solution
denoted w*. This allows us to compute streamlines for any
initial value s” € €2 and step size h € R+ (Figure 1). At each
time step ¢, we interpolate the values around current point
st with the neighboring samples, approximate the derivatives
using central difference, and take a small step of size h until
a goal (or obstacle) is reached. This is essentially gradient
descent. Formally, we define a streamline as an ordered

list s = (sY,...,s7), assuming it takes 7 steps to reach a
terminating point. For each ¢ € {0,...,7 — 1}, the location
of s*! € O is computed following:

s =" = h v o(s))

with (ﬁ : 0 — R as the interpolated approximation of ¢ using
u™*, assuming it is normalized to a unit vector.

C. Benefits of Harmonic Function Planners

Harmonic functions are highly useful for path and motion
planning in robotics for a number of reasons. First, they are
complete (up to the grid resolution) and always find a path
from any location (not just a single initial location) to the
goal(s); there are no local minima [7]. This is important since
actual execution via a path follower does not perfectly follow
the path. Deviations can easily be corrected because there is a
valid gradient everywhere, as opposed to other path planners.
Second, they obviously handle multiple goals, and obstacles,
both in any possible shape as well. Third, their resulting
streamlines must be smooth curves, which tend to be more
easily followable by a path follower [13]. Fourth, Gauss-
Seidel and SOR, as described above, are anytime algorithms
that can be used at (almost) anytime to find a path; additional

iterations simply improve the streamline. Fifth, it optimally
minimizes the probability the robot will hit an obstacle before
reaching the goal.

There are, however, some drawbacks to harmonic func-
tions. First, the solution is only as good as the discretization
or resolution used to define X in proportion to the size of
Q. This is an issue for most methods which use occupancy
grids. These grid precision issues can be addressed by
increasing the resolution. Second, it is computationally more
expensive when compared to sampling methods such as RRT
or PRMs. The first and second issues can be addressed
by algorithmic techniques (e.g., multi-grid methods), more
powerful hardware, or the parallelization techniques we
leverage here. Third, perhaps the most crippling drawback
is that implementations of Jacobi iteration, Gauss-Seidel, or
SOR fail to find valid gradients for all but the smallest grid
sizes (e.g., 256-by-256) due to numerical precision. In the
next section, we solve this well-known issue using a log-
space mapping which perfectly preserves all of the harmonic
function properties.

III. LOoG-SPACE HARMONIC FUNCTIONS

All of the research on potential fields with harmonic
functions have limitations due to numerical precision. The
solutions returned by any of these iterative methods actu-
ally yield incorrect results with even a modest number of
cells (e.g., larger than a 256-by-256 grid X with complex
boundaries). IEEE floating-point standards [14] for single
precision (floats; 4 bytes) have numerical issues in addi-
tion/multiplication around le~7. Double precision (doubles;
8 bytes) have numerical these numerical issues around 1e ¢,
and even higher precisions (e.g., long doubles; 16 bytes)
fail around 1e~19. Since almost all the neighbor averaging
that takes place are near the obstacle value of 1, we quickly
run into this issue. The resultant streamlines fail to find the
goal from “distant” starting points. Simply multiplying the
obstacle potential by a large value (e.g., 1e'%) or changing
the precision (e.g., long double) might help provide slightly
more “numerical room” for the algorithm; however, this does
not address the fundamental scalability issue. In practice, it
only helps a very small amount (e.g., Figure 2). To solve this
issue, we perform operations in a special log-space.

A. Log-Space Gauss-Seidel Mapping

The log-space mapping works by exploiting the properties
of logarithms and exponentiation, namely using the log-
sum-exp algorithm, denoted ¢se below. This algorithm is
commonly used in machine learning to multiply thousands
of near-zero probabilities together. It is formally defined for
any values y = [y1,...,yx]? as:

k
gk
lse(y) = y* + log Z evity 3)
i=1
with y* = max;y; in most cases. In order to use this,
however, we need to manipulate the numerical relaxation
problem into this form.

First, in the log-space Gauss-Seidel algorithm, an auxiliary
variable v : R™ — R is introduced for u instead:

v(x) = log ((1—u(x))(1—5) +5) (4)

with a small § > 0 that determines how closely we can
approximate log0. This maps u to be within the range
of [6,1] and then applies a logarithm. Crucially, u values
are flipped so that obstacles are 0 and goals are 1. This
maximizes the efficiency of log-sum-exp because, in practice,
almost all values are nearly 1, causing the numerical preci-
sion problems. This is due to the commonly disproportionate
ratio of obstacles to goals. Thus, § is really what pushes
this model to have exponentially more “numerical room” in
which to operate.

For each free space cell x € R (¢t even) or each x € B
(t odd), the log-space Gauss-Seidel update for iteration ¢ is
defined as:

0, ifxeG
v (x) = { logd, ifxeO 5)
lse(vt) —log2n, otherwise
with vt = (vt(z1+1,x_1),..., v (xz,£1,x_,)) and obsta-

cle penalty logd « 0 (e.g., logd = —1e'®, which implies
§ = e~'¢"). This is iterated until at some time ¢:

vt — vt_lHoo = max |v*(x) — vt_l(x)| <e€ (6)

with convergence criterion € > 0, but with respect to v.
Importantly, we never convert v back to u; doing so would
undo all this effort. Finally, the astute reader might wonder if
we can use SOR. This will be explained in the next section.

B. Theoretical Analysis

We prove three important properties, two covering correct-
ness of the approach, and the third addressing the error upon
convergence. To begin, Proposition 1 states that the algorithm
is correct, namely that it is a valid log-space mapping of the
original Gauss-Seidel algorithm.

Proposition 1 (Correctness): Gauss-Seidel (Equation 1
with A = 1) mapped to the log-space (Equation 4) is
equivalent to the log-space Gauss-Seidel (Equation 5).

Proof: First, we check the two boundary values. If
x € G, then by Equation 4:

vt (x) = log ((1 —0)(1—4) + 5) —logl=0
Next, if x € O, then by Equation 4:
vt (x) = log ((1 —1)(1-6) + 5) —logd

With both boundaries correct, we examine the update. By
Equation 4, and then Equation 1 with A = 1, we have:
1 n
t+1oy _ L b , —
v (x) = log ((1 5 ;u (x; £1,x-))(1 —=9) + 6)
Let 1 =37 (5 + 5), and similarly 6 = 37" | (2 + =),
then distribute (1 —) to obtain:

n

1
t+l(x) = log —
v (x) = log ™

(1 —ul(z; £ 1,x4))(1 = 68) +9)

g

i=1

By the properties loga/b = loga — logh and z = e!°8*:
vt (x) = log Z e (@itlx—s) _ log 2n
i—1

= (se(v') —log2n

Thus, in all three cases, we are able to take the log-space
value from Equation 4, apply the original Gauss-Seidel in
Equation 1 (with A = 1), and create the log-space Gauss-
Seidel in Equation 5. []

Now that we know this algorithm is correct, we need to
compute the policy via streamlines. The issue is that we store
the solution in log-space; converting it back and computing
streamlines runs into the exact same numerical precision
problems again. So, we must guarantee that the gradients
used in log-space are equal to those used in normal space.
This is proven in Proposition 2.

Proposition 2 (Correctness of Log-Space Streamlines):
Let u and v be the converged results from Equations 1
(with A = 1) and 5, respectively. Let s, and s, be their
resulting streamlines, s,, following gradient descent and s,
following gradient ascent. For any initial w € €, s, = sy.

Proof: By Equation 2, for any t € {0,...,7 — 1}:
st =s' + 1y ¢(s!)
It is sufficient to show that vdgu = -V (;ASU, i.e., that the

gradients (unit vectors) are opposites. Equivalently, we show
that their dot product is —1.

n ou(x) ov(x)

ngu : V(]Sv = azj 8Ij
i:zl 17 dul2 | 7 ¢ol2

First, we take ag(*) for any i:
z;

dv(x) 0
&xi ﬁ(El

log ((1 —u(x))(1 = 8) + 5)

1-94 ou(x)
- (1—u(x))(1—5)+5(_ ox;)

Then, we simplify the elements of vg%v, such that for any i:

2v(x) (1-6)(_ au(x))
ox; (1—u(x))(1-6)+6 01,
17 ol @) (-)
(1 u(x))(l 8)+4 dxys
_ ou(x) Ju(x)
ox; _ 0x;

S0 1(uts)2 | 7 bull2

This manipulation is only possible because § € [0,1] and
u(x) € [0, 1]. Finally, we apply this to the original equation:
n oulx) du(x)

_ Z ozj ozj _
SV dull2 |7 dull2
Thus, this algorithm returns a gradient equal to the negated
original gradient. Therefore, the algorithm’s streamlines are
identical to the original streamlines. []

Vﬂgu : ngv = _(v¢3u)2 =-1

Now that we know both the algorithm and the resultant
policy’s streamlines are correct, we examine the error of
the system with respect to the true normal values u after
convergence of v. First, we prove a brief Lemma 1, then
provide the complete error bound in Proposition 3.

Lemma 1: If v(x) > v/(x), then u(x) < u/(x).

Proof: We begin with v(x) > v'(x), implying that
log(1—u(x))(1—0)+3d > log(1 —u'(x))(1—6) + 0. Thus,
1 —u(x) >1—1u/(x), and so u(x) < u'(x). |

Proposition 3 (Error Bound): Let t be the number of iter-
ations until convergence to within ¢ (Equation 6). Let u’ and
u!~! be the non-log-space converged values and previous
time step, respectively. The error from optimal is:

ec—1
< =) M

Proof: Take any x. Without loss of generality, let
vi(x) — v*71(x) > 0. By Equation 6:

e > vf(x) — v (x)

= log((1 — u*(x))(1 —) + 9)
—log((1 —u'~1(x))(1 — &) + &)
(1 —ul(x))(1—=68)+4§

(1—wu=1(x)(1—-¥8)+4¢

(1 —uH(x))ef > 1 —ul(x)+%(1—e)

1—ef

1-9

We multiply u? by e¢ > 1 (because ¢ > 0), multiply both
sides by —1, and then apply Lemma 1:

[’ = u' e

ef >

ul —ut T (x)ef >

€1
0 < ut~! ot < e—-1
W)~) <
Thus, this true for all x, and so we are done. |

Interestingly, this error bound approximates the error e if
we were to simply use the original Gauss-Seidel; however,
e grows much faster than this bound from Equation 7. For
example, a modest § = e~'% and € = 0.1 yields an improved
error bound of 0.09517 < ¢ = 0.1. They do, however,
converge to the same performance as € — 0.

The reason why we do not use SOR can be found in
Proposition 1’s proof, provided A is not omitted. This results
in a log(l — A\) term, which is undefined for any A > 1.
Intuitively, log-space SOR would cause values to oscillate
into zero or negative numbers, during which one cannot take
a logarithm. Thankfully, with A = 1, this term does not exist.

C. Parallelization

Both Gauss-Seidel and SOR can be parallelized, but are
not perfectly parallelizable like Jacobi iteration. As described
in Section II-A, we must order the updates over the n-
dimensional grid in a special way; we use a simple red-black
ordering. The first half of the updates use neighbors that are
not being updated, with the second half of the updates using
these newly updated values. The result are two steps, each
having completely disconnected cells.

Algorithm 1 GPU Log-Space Gauss-Seidel Update (2-D)

Require: b;4, ny: The block ID and num blocks.
Require: ¢;4, nt: The thread ID and num threads.
Require: £: Map cell (i, 7) to locked boolean (i.e., it is in OUG).
Require: v: The harmonic function values in log-space.
Require: ¢: The iteration index.

1: for i = biq; 1 <mi; i =1+ ny do

2 ke (t%2) # (1%2)

3 for j =tia+k; j <mo; j =7+ 2n: do

4 if £; ; = false then

5 0¥ — max{vi—1,j,Vit1,4, Vi j—1,Vij+1}

6: v;,; < v*+log(exp{vi—1,; —v* }+exp{vit1,;—v* }+
7: exp{vi,j—1 — v*} + exp{vi j 11 — v*})
8 end if

9 end for

10: end for

We use CUDA [18], a General-Purpose GPU (GPGPU)
language developed by Nvidia. Recently, low-power embed-
ded GPUs have become available for robotics applications
(e.g., Nvidia Jetson TX1) which have hundreds of cores. In
CUDA, threads are grouped into collections called blocks,
both denoted by their index (zero-indexed). Threads in a
block are executed together on a streaming multiprocessor.
The actual unit that is executed in parallel on an Nvidia
GPU is called a warp, consisting of 32 threads within a
block (for current hardware). For this reason, blocks sizes are
commonly divisible by 32; we use 1024 in the experiments.
Algorithm 1 describes the parallel log-space Gauss-Seidel
implementation (2-D) for threads, updating v at particular
cells. It strides over multiple cells to handle scenarios in
which the number of blocks and/or threads is less than the
grid’s height and/or width.

IV. EXPERIMENTATION

We first compare non-log-space implementations with the
log-space implementations, both CPU and GPU in 7 domains
in Table I. The UMass [19] and Willow Garage [8] domains
model path planning in a known office/home environment.
The Mine domain captures path planning in maps pro-
duced by Simultaneous Localization and Mapping (SLAM)
algorithms generated from point clouds [20]. The C-Space
domain is representative of basic motion planning for a
two degree of freedom (DOF) manipulator [21]. The Maze
domain describes often the worst-case scenario for path
planners: narrow corridors and large sizes [22].

The results clearly show that CPU SOR (C) fails to prop-
erly converge in the percentage of free space cells (skipping
obstacles and goals) with a valid streamline (%). This is,
of course, due to numerical precision issues. Both log-space
CPU and GPU yield a 100% for this metric. The results also
show the benefits of our GPU implementation (¢-G) over
our CPU implementation (¢-C). The GPU version is one to
two orders of magnitude faster than the CPU version. Since
the update times (7,) are low, we are able to easily run
any number of updates and return a path anytime (albeit not
immediately optimal). Additionally, the convergence times
(T¢) are universally quite low for the log-space GPU imple-

C 0-C {-G
Domain N % | Tu| Te Tw Te| Ty Te
UMass 152600 [90.50 [0.74 | 0.51 | 6.27| 160.51]0.19| 4.88
Willow | 1694561 | 00.67 | 7.79 | 2.64 | 63.81 | 7095.86 | 0.39 | 42.55
Mine S | 1221120|20.25|2.63 | 1.31 | 16.48 | 786.32|0.26 | 12.37
Mine L | 2461965 | 10.24 | 3.71]0.99 | 18.57 | 887.45|0.36| 16.96
C-Space 95352 35.67|0.37(0.09| 2.94 67.90| 0.08| 1.86
Maze S | 194084 | 01.71|1.03]0.09| 9.21| 185.12|0.08| 1.62
Maze L | 925444 |00.14 | 5.00 | 0.37 | 44.19 | 8321.81| 0.28 | 51.83

TABLE I
RESULTS FOR 7 DOMAINS WITH DIFFERING NUMBERS OF CELLS N.
ALGORITHMS: CPU SOR (C), CPU LOG-GS (¢-C), GPU LOG-GS (¢-G).
METRICS: PERCENTAGE OF CELLS WITH A VALID STREAMLINE (%),
TIME PER UPDATE (1%, IN milliseconds) AND TIME UNTIL CONVERGENCE
(T, IN seconds).

mentation. For these reasons, the overall method is easily
usable in robot scenarios that must move and react in real-
time. Finally, we visually demonstrate the log-space mapping
produces superior streamlines, as compared with non-log-
space implementations (both single- and double-precisions),
in Figures 1 and 2.

We demonstrate the new long-range, fast path planning
capabilities that the algorithm provides in a real system.
Figure 3 depicts an experiment using the log-space harmonic
function ROS node on the uBot-6. The log-space solution
enables the uBot-6 to plan a smooth path from one corner
of the building’s floor to the other. Since it is an anytime
algorithm, the uBot-6 is able to begin executing a plan
almost immediately with respect to real-world time. The
solution improves as it follows the streamline, reaching the
destination quickly while optimally avoiding obstacles.

V. CONCLUSION

We present a log-space solution to the long-standing
numerical precision problem for harmonic function path
planning. This approach leverages the log-sum-exp algorithm
to do neighbor averaging to operate within numerical preci-
sion. We prove three propositions regarding the algorithm’s
correctness and convergence properties. Experiments on 7
realistic domains clearly show the proposed method allows
for exponentially larger problems to be solved. We propose a
GPU implementation as well, which provides over an order
of magnitude speedup. We demonstrate the approach on a
real robot as it rapidly produces an optimal obstacle-avoiding
path to navigate a building environment. A new library
called epic contains both CPU and GPU implementations,
a nav_core plugin for ROS, and a more general anytime
harmonic path planning ROS node. We provide all of the
source code for solving harmonic functions in log-space so
that other researchers may continue to design large-scale
robotic path and motion planning algorithms.

REFERENCES

[1] J. Barraquand, B. Langlois, and J.-C. Latombe, “Numerical potential
field techniques for robot path planning,” IEEE Transactions on
Systems, Man and Cybernetics, vol. 22, no. 2, pp. 224-241, 1992.

[2] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron,
J. Diebel, P. Fong, J. Gale, M. Halpenny, G. Hoffmann, et al., “Stanley:
The robot that won the DARPA Grand Challenge,” Journal of Field
Robotics, vol. 23, no. 9, pp. 661-692, 2006.

Fig. 2.

Example Maze S [22] (802-by-242) with obstacles (black) and free space (white and blue). Example streamlines (green) show our log-space

Gauss-Seidel GPU implementation’s solution. A/l non-obstacle cells return a valid gradient for our algorithm. The two small blue regions are the only cells
in which valid gradients (producing goal-reaching streamlines) are shown for non-log-space SOR with single-precision (dark blue) and double-precision
(both blue). This figure also highlights the exponentially longer paths that the algorithm can find, as given by the highlighted streamline (Start to Goal).

Fig. 3.

Demonstration of uBot-6’s log-space harmonic path planning made over time (top 1-4) in a laboratory map (940-by-310). The complete path and

map are shown (bottom). Blue, red, and green lines show the paths after 0.5, 1.5, and 4.5 seconds of planning, respectively. Path following and execution
started after receiving the first valid path at 0.5 seconds. During execution the path is refined until convergence. This demonstrates the anytime properties.

[3]

[5]

[7]

[8]

[9]

[10]

[11]

[12]

R. Hong and G. N. DeSouza, “A real-time path planner for a smart
wheelchair using harmonic potentials and a rubber band model,” in
Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 1EEE, 2010, pp. 3282-3287.

C. Goerzen, Z. Kong, and B. Mettler, “A survey of motion planning
algorithms from the perspective of autonomous UAV guidance,” Jour-
nal of Intelligent and Robotic Systems, vol. 57, no. 1-4, pp. 65-100,
2010.

J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA), vol. 2. 1EEE,
2000, pp. 995-1001.

L. E. Kavraki, P. §Vestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12,
no. 4, pp. 566-580, 1996.

C. L. Connolly and R. A. Grupen, “The applications of harmonic
functions to robotics,” Journal of Robotic Systems, vol. 10, no. 7,
pp. 931-946, 1993.

E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Konolige,
“The office marathon: Robust navigation in an indoor office envi-
ronment,” in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), May 2010, pp. 3-8.

J. Rosell and P. Iniguez, “Path planning using harmonic functions
and probabilistic cell decomposition,” in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA). 1EEE,
2005, pp. 1803-1808.

D. Aarno, D. Kragic, and H. Christensen, “Artificial potential biased
probabilistic roadmap method,” in Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA), vol. 1. 1EEE,
2004, pp. 461-466.

S. Garrido, L. Moreno, D. Blanco, and F. M. Monar, “Robotic motion
using harmonic functions and finite elements,” Journal of Intelligent
and Robotic Systems, vol. 59, no. 1, pp. 57-73, 2010.

C. Torres-Huitzil, B. Girau, A. Boumaza, and B. Scherrer, “Embed-

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

ded harmonic control for trajectory planning in large environments,”
in Proceedings of the International Conference on ReConFigurable
Computing and FPGAs, 2008.

S. Scherer, S. Singh, L. Chamberlain, and M. Elgersma, “Flying
fast and low among obstacles: Methodology and experiments,” The
International Journal of Robotics Research, vol. 27, no. 5, pp. 549—
574, 2008.

“IEEE standard for floating-point arithmetic,” IEEE Std 754-2008, pp.
1-70, August 2008.

A. Tahbaz-Salehi and A. Jadbabaie, “A one-parameter family of
distributed consensus algorithms with boundary: From shortest paths
to mean hitting times,” in Proceedings of the 4th IEEE Conference on
Decision and Control (CDC). 1EEE, 2006, pp. 4664—4669.

D. Ruiken, M. W. Lanighan, and R. A. Grupen, “Postural modes and
control for dexterous mobile manipulation: the UMass uBot concept,”
in Proceedings of the 13th IEEE-RAS International Conference on
Humanoid Robots (Humanoids), October 2013, pp. 280-285.

C. 1. Connolly, “Harmonic functions and collision probabilities,”
International Journal of Robotics Research, vol. 16, no. 4, pp. 497—
507, 1997.

Nvidia Corporation, “About CUDA,” 2016. [Online]. Available:
https://developer.nvidia.com/about-cuda

S. Sen and R. A. Grupen, “Integrating task level planning with stochas-
tic control,” School of Computer Science, University of Massachusetts
Amberst, Tech. Rep. UM-CS-2014-005, 2014.

S. Thrun, D. Héhnel, D. Ferguson, M. Montemerlo, R. Triebel,
W. Burgard, C. Baker, Z. Omohundro, S. Thayer, and W. Whittaker,
“A system for volumetric robotic mapping of abandoned mines,” in
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), Taipei, Taiwan, 2003.

R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza, Introduction to
autonomous mobile robots. MIT press, 2011.

J. Bostrom and JGB Service, “Maze generator,” 2016. [Online].
Available: http://www.mazegenerator.net/

