
Dexterous Mobility with the uBot-5 Mobile Manipulator

Scott R. Kuindersma, Edward Hannigan, Dirk Ruiken, and Roderic A. Grupen

Abstract— We present an initial demonstration of dexterous
mobility using the uBot-5, a dynamically balancing mobile ma-
nipulator. Dexterous mobility refers generally to a level of bodily
resourcefulness that permits the autonomous reassignment of
effectors for the purpose of maintaining mobility in a variety of
situations. We begin by describing a set of postural stability con-
trollers in terms of a small number of simple control objectives.
We then show how the resulting postures support dexterous
mobility by enabling a new “knuckle walking” mobility mode.
In a preliminary experiment, we develop this mobility mode
by formulating a practical reinforcement learning problem that
allows the robot to learn an efficient gait on-line in a single
trial.

I. INTRODUCTION

The construction of autonomous mobile manipulators that
are capable of operating in unstructured, dynamic environ-
ments is an active area of research with many important
applications, ranging from planetary exploration to human
assistive care [1]. The uBot-5 (Figure 1) is an 11-DOF mobile
manipulator designed to perform work in its environment
using a whole-body approach to mobility and manipulation.
In this paper, we present results demonstrating the potential
for dexterous mobility using the uBot-5. Here dexterity takes
on the meaning expounded by Bernstein [2], who spoke
generally of speed, agility, skillfulness, and resourcefulness
of body and mind. In the context of mobile manipulators, we
are interested in the autonomous reassignment of effectors to
meet many, perhaps competing, objectives relating to stability
and mobility. Such capabilities are becoming a central design
point for many next generation mobile manipulators (e.g., the
NASA ATHLETE rover [3] and RobotCub’s iCub [4]).

One of the initial goals of this research is the development
of a set of controllers for transitioning between and main-
taining a variety of stable postures. We claim that the robot’s
ability to exploit redundant degrees of freedom from different
postural stances allows it to solve a wider variety of control
tasks. For example, we expect that many control tasks will
require achieving mobility in environments not conducive to
an upright posture, e.g., navigating over irregular or slippery
terrain. In order for the robot to attempt such tasks, it must
implement a gait that allows it to gracefully cope with such
environmental irregularities. One solution may be to lean for-
ward and use its endpoints as stabilizing ground contacts as it
translates its body forward. In this work, we demonstrate how
such a behavior can be learned by exploring a constrained
subspace of the postural stability transition graph (described
in Section III). Since this behavior resembles the style of

The authors are affiliated with the Laboratory for Perceptual Robotics in
the Department of Computer Science, University of Massachusetts Amherst.
Corresponding author email: scottk@cs.umass.edu

Fig. 1. The uBot-5 mobile manipulator in the balancing posture demon-
strating two 2-DOF hand prototypes.

locomotion familiar to gorillas and chimpanzees, we refer to
it as “knuckle walking.”

The rest of the paper is organized as follows. In Section II
we provide background on the control basis [5] approach to
developmental robot programming. In Section III we intro-
duce a postural stability graph that illustrates the relationships
between the four basic postures studied in this paper. Using
the control basis approach, we formulate the principle con-
trollers necessary to achieve robust transitions between these
postures. Finally, in Section IV, we present a preliminary
demonstration of dexterous mobility by formulating a simple
reinforcement learning (RL) [6], [7] problem that allows the
robot to learn an efficient knuckle walking gait on-line in a
single trial.

II. CONTROL BASIS

The control basis is a framework for generating and com-
bining closed-loop controllers to produce integrated behavior
from a small set of primitive system objectives [5]. It is
formally defined by three sets: potential functions Ωφ, sensor
resources Ωσ , and control resources Ωτ . An element in Ωσ

is a reference value derived from the robot’s sensors, such as
the Cartesian position of an endpoint or the angle of the left
elbow joint. The control resources contained in the set Ωτ

are generally references for low-level joint position or torque
controllers.

Each potential function φi ∈ Ωφ serves as a description
of a primitive subtask in an integrated behavioral program.
A potential function takes as an argument a subset of the
available sensor resources and returns a positive scalar which
may be thought of as a measure of the error in the system for
that task. Examples of potential functions include fields that
describe kinematic conditioning [8], harmonic functions for

collision-free motion [9], and force closure functions [10].
In each of these cases, φ is a scalar navigation function [11]
defined to satisfy properties that guarantee asymptotic sta-
bility. In this work, we will make extensive use of a simple
quadratic function,

φ(σref , σ) = (σref − σ)T (σref − σ), (1)

where σref , σ ∈ Ωσ .
Closed-loop controllers are generated by combining a

potential function φ ∈ Ωφ, with sensor resources σ ⊆ Ωσ ,
and control resources τ ⊆ Ωτ . The notation we use to
describe a controller is c(φ, σ, τ). Controllers provide a time
series of reference inputs to the underlying control resources.
The sensitivity of the potential function to changes in the
values of control resources is captured in the error Jacobian,
J = ∂φ(σ)/∂τ . Reference inputs to control resources can
then be computed by ∆τ = J#φ(σ), where J# is the
pseudoinverse of J [12].

Multi-objective control actions are constructed by allowing
controllers to execute concurrently in a prioritized manner.
Concurrency is managed by projecting lower priority con-
trollers into the nullspace of superior controllers [13],

∆τ = J#
supφsup +

[
I − J#

supJsup

]
J#

infφinf . (2)

This prioritized mapping assures that inferior control inputs
do not destructively interfere with superior objectives. In
the following, we will use the “subject-to” operator “/” as
an abbreviation for the nullspace projection. We can then
write cinf / csup, which is equivalent to (2). In general,
we can cascade n controllers using nullspace projections,
cn / · · · / c2 / c1, allowing for a greater degree of multi-
objective control [14], [5].

III. POSTURAL STABILITY CONTROL

Figure 2 illustrates four principle modes of postural stabil-
ity for the uBot-5. The simplest mode is the prone posture of
the robot, where it lies face down on the ground plane. In a
sequence of control actions that move the arms into a push-
up configuration and then execute the push-up, the robot can
transition from the prone posture to a four-point stance or
“quadruped” posture. From there, the robot may reconfigure
itself so that one endpoint can be safely withdrawn to yield
the “tripod” stance. Figure 2 shows contacts between the
endpoints and the ground plane exclusively, however, these
contacts can, theoretically, provide bracing forces against any
surface in the environment including vertical surfaces. From
the quadruped stance, the robot can push-up further into a
nearly vertical posture from which the robot can transition
to a balancing postural mode. In this mode, both hands are
free to serve as manipulation devices instead of as stabilizing
mechanisms for mobility.

Next we provide detailed descriptions of controllers for
achieving the posture transitions described in Figure 2.
Although we are interested in the development of pos-
tural stability controllers that are transferrable between
morphologically-similar robots, the main result of this section
is an initial demonstration of whole-body postural control

Balancing

Tripod Quadruped

Prone

Fig. 2. The uBot-5 postural stability transition graph.�
�
� �

��
� ��

�

Fig. 3. Geometry of the uBot-5 in the sagittal plane. The inset on the right
illustrates the uBot in a vertical body tilt configuration with the same upper
body posture.

with the uBot-5. Thus, we leave a more general formulation
of postural stability control for future work and present two
simple and efficient controllers for achieving the transitions
in Figure 2.

A. Push-up

We first consider the “push-up” maneuver, in which the
robot transitions from prone to a four-point stance. Figure 3
provides a kinematic description of the robot that is sufficient
to design the controllers for this maneuver. In this applica-
tion, configuration variables include the attitude of the body
relative to vertical, θ1, joint angles, θ2 and θ3, the orientation
of the forelimb with respect to the ground plane, θ4, and the
distance from the arm endpoint ground contact to the wheel
axle, l4. If we assume that the endpoint is rigidly connected
to (and the wheel remains in contact with) the horizontal
ground plane, the resulting closed-chain mechanism has only
two degrees of freedom, θ2 and θ3, the values of which
are measured directly using joint encoders on the uBot. We
determine the values of the remaining configuration variables
(θ1, θ4, and l4) using the kinematic relations of the closed-
chain mechanism.

The push-up maneuver is conceived as the combination of
two objectives. The first is a kinematic conditioning objective
related to protecting the relatively weak elbow joint in uBot-5
from the large forces involved in the behavior. This objective
is achieved by constraining the attitude of the forelimb with

respect to the ground plane. In particular, the variable θ4 in
Figure 3 should remain close to π/2 radians. Note that this
objective can be viewed more generally as maximizing the
vertical component of the force ellipsoid by controlling the
elbow joint angle [15]. The second objective is to raise the
shoulder of the robot vertically from the prone position to
an upright posture that bears most of the robot’s weight on
the wheels. The resulting four-point stance is very stable and
operates the upper arm motors at nominal currents.

A multi-objective controller for transitioning between the
prone and quadruped postures is designed using the control
basis approach, where potential fields are used to map sensor
resource, σ = [θ2 θ3]T , to reference inputs for control
resources, τ = [θ2 θ3]T , in a manner that reflects the
independent objectives of the movement. Since l4 changes
throughout the push-up behavior, we must also send reference
positions to the wheels consistent with the changes in θ2 and
θ3 to avoid contention between the arm and wheel motors
due to ground friction. All other degrees of freedom are held
fixed while these closed-loop systems implement the push-up
behavior.

Since the first objective is described by requiring that θ4 be
maintained near θ4,ref = π/2 radians, the error with respect
to this objective can be expressed simply as

ε1 = θ4,ref − θ4 = θ1 + θ2 + θ3 − π.

The forelimb orientation constraint can be represented as a
quadratic potential function as in (1), φ(θ4,ref , θ4) = ε21.
We can then write the error Jacobian, J1, that describes the
sensitivity of the orientation constraint with respect control
variables, θ2 and θ3,

J1 =
[

∂ε21
∂θ2

∂ε21
∂θ3

]
,

where ∂ε21
∂θ2

= 2ε1(∂θ1
∂θ2

+ 1) and ∂ε21
∂θ3

= 2ε1(∂θ1
∂θ3

+ 1).
The second objective of the push-up behavior is to elevate

the shoulder joint (labeled “A” in Figure 3) to a vertical height
l1 in the wheel coordinate frame. This objective is stated
most succinctly in terms of the postural variable θ1. That is,
by setting the reference value1 θ1,ref = 0 we can describe
the error in the system with respect to this objective as ε2 =
θ1,ref − θ1 = −θ1. Using ε22 as our potential function, we
can write the Jacobian, J2, describing the sensitivity of the
shoulder constraint with respect to control variables, θ2 and
θ3,

J2 =
[

∂ε22
∂θ2

∂ε22
∂θ3

]
,

where ∂ε22
∂θ2

= 2θ1
∂θ1
∂θ2

and ∂ε22
∂θ3

= 2θ1
∂θ1
∂θ3

.
Now that we have precisely defined our two control sub-

tasks, we combine them using the approach to multi-objective
control described by (2). Namely, we wish to elevate the
shoulder joint subject-to maintaining a near vertical forelimb
attitude. We write this mathematically as[

∆θ2

∆θ3

]
= J#

1 φ(π/2, θ4) + (I − J#
1 J1)J

#
2 φ(0, θ1)

1Notice that the robot can push-up to different body tilt angles simply by
changing the value of θ1,ref .

ZMP

x
y

COM

Endpoints

Wheels

αl

Fig. 4. Geometry of the uBot-5 in the ground plane. The dashed line
represents the support polygon for the left tripod posture.

or c(ε22, σ, τ) / c(ε21, σ, τ), using the notation described in
Section II. Here the forelimb postural control objective is
higher priority than the shoulder elevation objective. Note
that if the priorities were reversed, the robot might elevate
its shoulder more quickly, but while doing so it may violate
the constraint on forelimb attitude which could result in
instability due to insufficient elbow motor torques.

B. Tripod Stability

We next describe a method for transitioning to and main-
taining stable tripod stances. First we notice that it is not
enough to simply withdraw one endpoint while in a four-
point stance, since this would, in most cases, cause the
robot become unstable and fall in the direction of the raised
endpoint. We must first identify a suitable stability criterion,
then develop a means of achieving a stable tripod according
to this criterion.

As a first attempt, we make use of the familiar zero
moment point (ZMP) [16] to define a measure of quasi-
static stability. Given a set of N ground contact points,
{p1, p2, . . . , pN} and a set of ground reaction forces,
{f1, f2, . . . , fN}, we use the z-component of the ground
reaction force at each point to calculate the ZMP [17],
ZMP =

∑N
i=1 pifiz/

∑N
i=1 fiz . We say the robot is stable

if its center of mass (COM) projection onto the ground
plane is within some small distance of the ZMP. Thus, the
controller that stabilizes the robot in the left tripod posture
must move the robot’s COM projection toward the ZMP that
is calculated using both wheel ground contacts and the left
endpoint ground contact. Similarly, for the right tripod we
calculate the ZMP using the right endpoint contact instead of
the left, and for the four-point stance we use all four ground
contacts. To design such a controller, we use the simplified
kinematic description of the robot shown in Figure 4.

This task can also be described using our quadratic poten-
tial function,

φT = φ(σcom, σzmp) = (σcom − σzmp)T (σcom − σzmp),

where σcom = [xc yc]T and σzmp = [xz yz]T are sensor
resource vectors corresponding to the location of the COM
and ZMP in the ground plane. To minimize this potential, we
use control resources τ = [yz α] to produce base translations
and rotations on the robot. We make the assumption that for
small changes in yz and α, the ZMP remains fixed in the
world frame and the COM projection remains fixed in the
robot base coordinate frame (shown in Figure 4). In practice

Balancing

Right Tripod Left Tripod

Prone

Quadruped

Fig. 5. The uBot-5 executing the postural stability controllers.

this assumption holds since mass of the body is much greater
than the mass of the arms and the ground contact forces
change very little during small movements.

Note that unlike the control resources in the push-up
controller, yz and α do not correspond directly to motors
on the robot. However, since we can easily convert value
changes in these parameters into specific motor commands,
we can use these higher-level parameters to make our con-
troller specification simpler. For example, a change in yz

can be translated into position changes in each wheel and
corresponding changes in each endpoint position to avoid
contention between wheel and arm motors.

We write the Jacobian for transitioning to the tripod posture
as

J3 =
[

∂φT

∂yz

∂φT

∂α

]
,

where ∂φT

∂yz
= 2yz−2yc and ∂φT

∂α = 2lxc sin(α)−2lyc cos(α).

C. Implementation

Figure 5 shows the behavior of the uBot-5 while executing
the postural stability controllers. The robot uses the push-
up controller from the prone position with a reference body
tilt angle of π/6 radians to achieve the shown quadruped
posture. From there, it can use the left or right tripod stability
controller to achieve a stable tripod posture, from which it
can raise the non-supporting endpoint. The robot can replace
the raised endpoint in the ground plane and transition back to
a stable quadruped stance. From there, it can push-up further
by setting the reference body tilt angle to 0 radians. After
this objective is reached, it can activate a linear quadratic
regulator (LQR) for balancing and withdraw its endpoints to
transition to the upright mode. The robot can transition back
to prone by positioning its endpoints for a four-point brace
and deactivating the LQR controller. From the quadruped
stance, the robot achieves the prone posture by using the
push-up controller with a reference body tilt angle of π/2
radians, resulting in a set-down behavior.

IV. KNUCKLE WALKING

Next we present preliminary experimental results in which
a simulated uBot-5 is able to exploit the ability to achieve
multiple postures for learning a new knuckle walking gait.
The central result is an early demonstration of dexterous
mobility using a combination of the control basis and re-
inforcement learning (RL) [6], [7]. Our decision to work
with the uBot’s simulated counterpart is strictly practical,
since experiments on the real robot revealed that a subset
of the positions encountered during a knuckle walking gait
caused two of the upper arm motors to approach their thermal
limits. In addition to providing a proof-of-concept, one of the
benefits of programming the simulated robot is our ability
to do a static analysis of the joint torques generated in the
knuckle walking behavior and use this information in the
design of new hardware for the uBot.

A. Q-Learning

In our learning experiments, we use single-step tabular Q-
learning [18]. Q-learning is an off-policy temporal difference
control algorithm used to learn approximations to the optimal
action-value function for a Markov decision process (MDP).
In this framework, we typically describe a task by a reward
function and the goal of the learning agent is to discover
a control policy that maximizes the expected sum of future
rewards.

Q-learning is defined by the update,

Q(st, at)← (1−α)Q(st, at)+α
[
rt+1 + γ max

a
Q(st+1, a)

]
,

where st and at are the observed state and action taken at
time step t, and rt+1 is the reward received after executing ac-
tion at in state st. The parameters α and γ represent the learn-
ing rate and discount factor, respectively, the latter describing
the current value assigned to future rewards. The actions
available to the robot correspond to activations of closed-loop
controllers constructed from the control basis. For example,
running the tripod stability controller (Section III-B) until
convergence is represented as a single discrete action. In our
experiments, the states descriptions are derived directly from
the set of available controllers, thus removing the need to
engineer a task-specific state representation.

B. States and Actions

In previous work [5], we have seen that a natural state de-
scription can be derived from the set of controllers available
to the robot. We can represent the state of the system as a
tuple of bits, with the ith bit being 1 if controller i is con-
verged, and 0 otherwise. Hart et al. extended this to a four-
valued predicate to describe the state of each controller [19]
and Coelho explored states derived from a set of continuous
dynamic models in the context of grasping [20].

For this task we use a simple state description derived from
the set of control actions listed in Table I. For simplicity,
we restrict the set of control actions those that would seem
relevant to the knuckle walking behavior. However, it is
important to note that the control actions were not specifically
engineered for this task. Each action is a controller that is

constructible from the uBot’s control basis. Thus, each action
is a parameterization of a potential function describing a basic
system objective such as improving stability or kinematic
conditioning. For example, the action “raise right endpoint”
is implemented by maximizing a measure of manipulability
for the right endpoint [13] and the action “place left endpoint”
repositions the left endpoint on the ground plane so that the
resulting left tripod satisfies COM = ZMP. We proceed with-
out providing a more detailed description of the controllers
in Table I since their specific form is not central to the results
in this section.

The state is described by an 11-tuple of bits, where each bit
corresponds to one of the available controllers and is equal to
1 if the controller is converged, and 0 otherwise. For example,
the state (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0) corresponds to a stable
left tripod with both endpoints in contact with the ground.
We know that both endpoints are in contact with the ground
since the bits corresponding to the controllers that raise either
endpoint (8,9) are both 0.

Label Controller Description
1 Stabilize quadruped stance
2 Stabilize left tripod stance
3 Stabilize right tripod stance
4 Forward
5 Reverse
6 Rotate clockwise
7 Rotate counterclockwise
8 Raise left endpoint
9 Raise right endpoint
10 Place left endpoint
11 Place right endpoint

TABLE I
PRIMITIVE CONTROL ACTIONS AVAILABLE TO THE ROBOT IN THE

KNUCKLE WALKING TASK.

The total number of possible states given our 11-variable
representation is 211 = 2048, but many of these states can
be eliminated by logical constraints derived from stability
criterion. It is important to impose restrictions on the actions
available to the robot since it might otherwise operate in an
unsafe way during the learning phase. This also adds structure
to the learning problem, making it possible to find efficient
policies on-line through stochastic exploration.

For the knuckle walking problem, we can encode logical
constraints on actions succinctly and discover the reachable
states using depth-first search. We define two boolean ma-
trices that capture the stability requirements of the system
during the knuckle walking task. The first matrix, A, is
represented in Table II. The matrix A describes which actions
can be executed concurrently, where each row and column
correspond to a controller in Table I. For example, A(4, 6) ≡
T means that concurrent execution of the forward transla-
tion and clockwise rotation controllers is valid, but since
A(4, 5) ≡ F , moving forward and backward concurrently
is not valid.

Suppose we consider concurrent actions which include up
to three controllers. The total number of possible control
actions is then

(
11
1

)
+

(
11
2

)
+

(
11
3

)
= 231. The validity of

a combination of controllers i, j, k is defined by the logical
expressions,

Valid(i, j)⇔ A(i, j), and

Controller ID

C
on

tr
ol

le
r

ID

1 2 3 4 5 6 7 8 9 10 11
1 F F F F F F F F F F F
2 F F F F F F F F F F F
3 F F F F F F F F F F F
4 F F F F F T T T T F F
5 F F F F F T T T T F F
6 F F F T T F F F T F F
7 F F F T T F F T F F F
8 F F F T T F T F F F F
9 F F F T T T F F F F F

10 F F F F F F F F F F F
11 F F F F F F F F F F F

TABLE II
A: VALID CONTROLLER COMBINATIONS.

Valid(i, j, k)⇔ A(i, j) ∧A(i, k) ∧A(j, k).

Thus, by systematically checking all pairs and triples of
controllers in this way, we can determine the complete set of
allowable actions, the size of which in this case is 25.

The second matrix, C, is represented in Table III. This
Controller ID

St
at

e
B

it

1 2 3 4 5 6 7 8 9 10 11
1 T T T T T F F F F F F
2 T T T T T T F F T F T
3 T T T T T F T T F T F
4 T T T F F F F T T T T
5 T T T F F F F T T T T
6 T T T F F F F T T T T
7 T T T F F F F T T T T
8 F F T T T F T F F T F
9 F T F T T T F F F F T

10 T T T T T T T T T F T
11 T T T T T T T T T T F

TABLE III
C : EXECUTABLE CONTROLLERS FROM EACH STATE.

matrix describes the constraints imposed on actions given
the current state. Here each row corresponds to a state bit
and each column corresponds to a controller index. For
example, if the robot is in a state with the right tripod stability
controller converged (i.e., the 3rd state bit is 1), it cannot
safely raise the right endpoint since that is a supporting
ground contact. This is reflected by C(3, 9) ≡ F .

Let us represent an action a as an 11-tuple, in the same way
as a state. For example, the action (0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0)
corresponds to concurrently translating forward, rotating
clockwise, and raising the right endpoint. To determine the
validity of an action a taken from a state s using the matrix
C, we use the following logical equivalence,

Valid(s, a)⇔ ∀1≤i,j≤11 (s[i] ∧ a[j]⇒ C(i, j)) ,

where s[i] and a[i] refers to the ith bit of the state and action
vector, respectively. This way an action is only valid from
a particular state if for every state bit i equal to 1, every
controller j involved in an action satisfies C(i, j) ≡ T .

We also make the restriction that at least one stability
controller must be converged at all times. This means that all
control actions must run subject to a stability controller (1–3).
For example, when in a quadruped posture and executing the
“forward” action, the robot will roll forward until its COM
projection strays too far from the ZMP, at which time the

forward controller stops executing and becomes converged.
The allowable distance between the COM and ZMP is a
parameter that we set to 3 cm in our experiments. Since
the “forward” action is a wheel velocity controller with a
fixed reference velocity, this stability requirement provides
a necessary stopping condition. The other translation and
rotation actions (5–7) behave similarly.

Combining these constraints with the set of allowable
actions, we can discover the set of reachable states by a
simple depth-first search. We start by assuming that the robot
is in a stable quadruped state and use the boolean matrix C
to determine which of the possible 25 actions are executable
from that state. Since the robot transitions from one state to
the next in a predictable way, we can generate the next states
reached by each allowable action and incrementally build a
set of reachable states. We proceed recursively for each new
state in turn until no actions remain for all states. In our
experiments this procedure discovers a set of 144 reachable
states, which is a significant reduction from the original 2048.

C. Learning Results

We conducted two learning experiments, one for the for-
ward gait and another for rotation. In both experiments we
used Q-learning with α = 0.1 and γ = 0.9. Throughout
learning, the robot used ε-greedy action selection with ε =
0.1. That is, at each time step, with probability ε the robot
chooses a random action, otherwise it takes the best action
based on its current estimate of the value function.

For the forward task, the reward function produced a small
negative reward after each action plus reward proportional to
the net body translation. We assume the robot begins each
episode in the stable quadruped state. The robot learned on-
line (i.e. by taking actions and observing rewards in real time)
and converged to a fixed greedy policy in an average of 282.1
time steps (or actions) over 10 experiments. We consider a
policy to be fixed if it remains unchanged for 50 time steps
while learning. The learned forward knuckle walking policy
is shown in Figure 6.

The rotation task is described by a reward function which
yields a small negative reward after each action plus a
reward proportional to the amount of clockwise rotation.
For the rotate behavior to be effective in a wide range of
situations, we would like to minimize its footprint over 2π
radians. We therefore add a small negative component to the
reward function proportional to the absolute body translation.
This results in a rotate-in-place behavior shown in Figure 7.
The robot converged to a stable policy in an average of
292.2 time steps in 10 experiments. Note that policies for
counterclockwise rotation and backward translation can also
be learned by straightforward modification of the reward
function.

In Figure 8 we compare the effectiveness of the above
policies with those learned when the robot is not allowed
to execute controllers concurrently. It is clear that for both
tasks, the ability to combine controllers to create concurrent
actions leads to more efficient gaits. This result is a simple
demonstration of the advantages of stochastically exploring
multi-objective control actions using the control basis.

3

4+8 10

4+9

11

4+8

Fig. 6. The learned policy for the forward knuckle walking task. The
numbers on the edges correspond to control actions in Table I.

3

8 10

6+9

11

6

Fig. 7. The learned policy for the rotate-in-place task.

To verify that the learned knuckle walking policy is
applicable to the real uBot-5, we allowed the robot to execute
the forward gait with the help of an inertial reel to offset
gravitational loads. This apparatus relieved enough joint
stress to permit successful execution of the gait (Figure 9).
Following our general approach to co-evolving behavior and
hardware, we have used the knuckle walking behavior as a
design specification for future versions of the robot. We are
currently assembling a uBot-6 which includes more powerful
motors in each arm joint.

V. CONCLUSIONS AND FUTURE WORK

A. Conclusions

We have introduced two postural stability controllers for
the uBot-5 mobile manipulator and showed that the ability
to achieve new quadruped and tripod postures leads to an
alternative knuckle walking mobility mode. Our primary
contribution is a preliminary demonstration of dexterous
mobility with the uBot-5; specifically, the ability of the robot

0 20 40 60 80 100
Number of actions

0

1

2

3

4

5

6

7

8

Fo
rw

ar
d

tra
ns

la
tio

n
(m

) Concurrent actions
Simple actions
Random actions

0 20 40 60 80 100

Number of actions

0

2

4

6

8

10

12

C
lo

ck
w

is
e

ro
ta

tio
n

(r
ad

ia
ns

) Concurrent actions
Simple actions
Random actions

(a) (b)
Fig. 8. Comparison of learned optimal policies with and without concurrent
actions. (a) Cumulative forward translation as a function of number of
actions. (b) Cumulative rotation as a function of number of actions. The
random policies are averaged over 10 trials and include concurrent actions.

Fig. 9. The uBot-5 executing the learning knuckle walking gait aided by an
inertial reel. The inertial reel offsets gravitational loads effectively reducing
the robot’s mass by 5 kilograms.

to reassign effectors typically used for manipulation to satisfy
mobility objectives. Using a combination of the control basis
and RL, the robot was able to learn an efficient knuckle
walking gait by combining and sequencing control actions
derived from task-independent system objectives related to
stability, mobility, and kinematic conditioning. We believe
that dexterous mobility will become an important design
consideration for robotic platforms intended to be competent
in navigation and manipulation tasks in a wide range of
environments.

B. Future Work

There are several important directions for future work.
First, we would like to generalize the postural stability
controllers in a way that would permit transfer to other, mor-
phologically similar, robots. For example, we can redefine
the push-up behavior in terms of a more general kinematic
conditioning objective that optimizes arm degrees of freedom
for generating vertically oriented forces. We also intend to
generalize the quasi-static ZMP-based controller to a moment
residual controller [5], allowing the robot to achieve stable
quadruped and tripod postures when the surface contacts are
non-coplanar (e.g. leaning on a wall or walking up small
stairs).

We would also like the robot to explore new mobility
modes and identify the manipulation affordances present in
different postures. This line of research may lead to new
methods for managing multiple mobility and manipulation
modes. For example, the robot must learn what mobility

mode is most appropriate when faced with irregular terrain,
and from what postures can it reach under a bed to retrieve
an object. Using the level of abstraction the control basis
provides, we hope to show that uBot can develop a large
control action repertoire and learn to adaptively manage its
resources to satisfy a variety of mobility and manipulation
objectives.

VI. ACKNOWLEDGMENTS

The authors would like to thank Patrick Deegan and Bryan
Thibodeau for their early contributions to postural stability
on the uBot. This research is supported under the NASA-
STTR-NNX08CD41P, ARO-W911NF-05-1-0396, and ONR-
5710002229 grants. Scott Kuindersma was also supported by
a MSGC Fellowship.

REFERENCES

[1] O. Brock and R. Grupen, “NSF/NASA workshop on autonomous
mobile manipulation (AMM), final report,” tech. rep., 2005.

[2] N. Bernstein, “On dexterity and its development,” in Dexterity and its
Development (M. Latash and M. Turvey, eds.), pp. 1–244, Mahwah,
NJ: Lawrence Erlbaum Associates, 1996.

[3] B. H. Wilcox, T. Litwin, J. Biesiadecki, J. Matthews, M. Heverly,
J. Morrison, J. Townsend, N. Ahmed, A. Sirota, and B. Cooper,
“Athlete: A cargo handling and manipulation robot for the moon,”
Journal of Field Robotics, vol. 24, no. 5, pp. 421–434, 2007.

[4] S. Degallier, L. Righetti, L. Natale, N. Nori, G. Metta, and A. Ijspeert,
“A modular, bio-inspired architecture for movement generation for
the infant-like robot iCub,” in Proceedings of the IEEE RAS/EMBS
International Conference on Biomedical Robotics and Biomechatronics
(BioRob) 2008, pp. 795–800, IEEE, 2008.

[5] M. Huber, A hybrid architecture for adaptive robot control. PhD thesis,
University of Massachusetts Amherst, 2000.

[6] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. Cambridge, MA: MIT Press, 1998.

[7] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming.
Belmont, MA: Athena Scientific, 1996.

[8] S. Hart and R. A. Grupen, “Natural task decomposition with intrinisic
potential fields,” in International Conference on Robotics and Systems
(IROS 2007), pp. 2507–2512, 2007.

[9] C. I. Connolly and R. A. Grupen, “The applications of harmonic
functions to robotics,” Journal of Robotic Systems, vol. 10, pp. 931–
946, Oct. 1993.

[10] R. P. Jr., A. H. Fagg, and R. A. Grupen, “Manipulation gaits: Sequences
of grasp control tasks,” in International Conference on Robotics and
Automation (ICRA), pp. 801–806, IEEE, 2004.

[11] D. Koditschek and E. Rimon, “Robot navigation functions on mani-
folds with boundary,” Advances in Applied Mathematics, vol. 11, no. 4,
pp. 412–442, 1990.

[12] Y. Nakamura, Advanced Robotics: Redundancy and Optimization. pub-
AW:adr: Addison-Wesley, 1991.

[13] T. Yoshikawa, “Manipulability of robotic mechanisms,” Int. J. Robotics
Research, vol. 4, pp. 3–9, Summer 1985.

[14] M. Huber and R. A. Grupen, “A feedback control structure for on-line
learning tasks,” Robotics and Autonomous Systems, vol. 22, no. 3-4,
pp. 303–315, 1997.

[15] S. Chiu, “Control of redundant manipulators for task compatibility,” in
International Conference on Robotics and Automation (ICRA), vol. 4,
pp. 1718–1724, IEEE, 1987.

[16] M. Vukobratovic and Y. Stepanenko, “On the stability of anthropomor-
phic systems,” Mathematical Biosciences, vol. 15, pp. 1–37, October
1972.

[17] B. Siciliano and O. Khatib, eds., Springer Handbook of Robotics,
ch. 16, pp. 361–389. Springer, 2008.

[18] C. J. C. H. Watkins, Learning from Delayed Rewards. PhD thesis,
King’s College, 1989.

[19] S. Hart, S. Sen, and R. A. Grupen, “Intrinsically motivated hierarchical
manipulation,” in International Conference on Robotics and Automa-
tion (ICRA), pp. 801–806, IEEE, 2008.

[20] J. A. Coelho, Multifingered grasping: Grasp reflexes and control
context. PhD thesis, University of Massachusetts Amherst, Jan. 01
2001.

