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Abstract

Robot control in nonlinear and nonstationary run-time
environments presents challenges to traditional software
methodologies. In particular, robot systems in “open” do-
mains can only be modeled probabilistically and must rely
on run-time feedback to detect whether hardware/software
configurations are adequate. Modifications must be ef-
fected while guaranteeing critical performance properties.
Moreover, in multi-robot systems, there are typically many
ways in which to compensate for inadequate performance.
The computational complexity of high dimensional senso-
rimotor systems prohibits the use of many traditional cen-
tralized methodologies.

We present an application in which a redundant sensor
array, distributed spatially over an office-like environment
can be used to track and localize a human being while
reacting at run-time to various kinds of faults, including:
hardware failure, inadequate sensor geometries, occlusion,
and bandwidth limitations. Responding at run-time re-
quires a combination of knowledge regarding the physical
sensorimotor device, its use in coordinated sensing oper-
ations, and high-level process descriptions. We present a
distributed control architecture in which run-time behavior
is both preanalyzed and recovered empirically to inform lo-
cal scheduling agents that commit resources autonomously
subject to process control specifications. Examples will be
available from our search and rescue platform1.

1 Introduction

High-level deliberation and low-level reactivity are
valuable in the control of autonomous and self-adaptive
systems. A successful implementation of such a hybrid
architecture would permit the system to make use of prior
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knowledge when appropriate and to respond quickly to run-
time data. The central open question appears to be decid-
ing how reacting and deliberating should interact in a con-
structive fashion. We have adopted a perspective in which
the control hierarchy is adaptive at every level. Low-level
control processes parameterized by resources interact with
the domain continuously and recover context observable by
the working set of control. This kind of context feedback
can be used to identify the current run-time environment
and permits the high-level process planner to re-deploy re-
sources so as to address the goals of the system and to
change the kinds of context feedback available. Over time,
robust plans for interacting with specific problem domains
are compiled these policies into rich, comprehensive reac-
tive policies. State descriptions evolve to express likely
run-time context at the highest levels and reactive policies
adapt to handle run-time contingencies at the lowest levels.

We are concentrating on how sensory and computational
resources, distributed in a non-uniform manner over mul-
tiple mobile platforms can be coordinated to achieve mis-
sion objectives. Our approach relies on technologies that
produce flexibility, resourcefulness, high performance, and
fault tolerance. Specifically, we are interested in (1) how
cross-modal sensory front-ends can be designed to provide
mission-specific percepts, (2) how perceptual behavior can
incorporate sensory information derived from two or more
robotic platforms carrying different sensors and feature ex-
traction algorithms, and (3) how team resources can be or-
ganized effectively and how low-level sensory and motor
activity can be scheduled to achieve multiple simultaneous
objectives.

A family of resource scheduling policies, called Behav-
ior Programs (B-Pgms), is downloaded into each member
of a working group of robots as part of the configuration
process. Each B-Pgm contains a set of (previously evalu-
ated) contingency plans with which to respond to a vari-
ety of likely run-time contexts. This policy is responsible
for orchestrating the run-time behavior of the system in re-
sponse to percepts gathered on-line. The temporal history
of states produced by a particular B-Pgm defines a run-time
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context and supports probabilistic performance predictions
for the team. These predictions are continuously refined
and updated for use in higher-level planning. Run-time
contexts that have may be handled by making use of con-
tingency plans in the B-Pgm, by re-deploying resources, or
by replanning at the mission/process planning level if re-
quired.

The UMass hybrid architecture is based on a set of prim-
itive, closed-loop control processes. This framework al-
lows hierarchical composition of the controllers into be-
havior programs (B-Pgms) for tracking, recognition, mo-
tion control, and for a more complex human tracking sce-
nario. We are developing schemes for automatically pro-
gramming behavior in a variety of meaningful contexts and
subsequently using these policies as abstract actions in a
growing Semi-Markov Decision Process (SMDP). These
hierarchically organized processes are implemented in a
distributed, real-time environment in which we are devel-
oping mechanisms for multi-threaded behavior. Moreover,
the multi-robot platform is designed to respond to multiple,
simultaneous objectives and reasons about resources using
a high-level process description and control procedure us-
ing the little-JIL process description language. Our goal is
an ambitious, vertically integrated software environment in
which run-time data sets drive the organization of behavior
and contribute to the management of large and comprehen-
sive software systems. This document describes the very
first experiments employing this paradigm.

2 Sensory Primitives for Motion Tracking

A multi-objective system requires that the sensory algo-
rithms are flexible to support adaptation and reconfigurable
on-line to facilitate fault-tolerance. Our approach is de-
signed to provide a set of sensor processing techniques that
can fulfill both low-level and high-level objectives in an
open environment. Cooperative interaction among mem-
bers of the robot team requires the mission planner to be
effective in utilizing system resources across team mem-
bers, including robot platforms, sensors, computation, and
communication. In particular, we are constructing virtual
robot behaviors across multiple coordinated platforms and
multiple sensors. To achieve the desired robustness, our
platform is configured with a variety of sensors and algo-
rithms. Vision is the primary sensing modality, but it is
complemented by inexpensive pyroelectric sensors, sonar,
infrared proximity sensors, and (in the future) acoustic sen-
sors. Multiple types of sensors are considered to be dis-
tributed across multiple robot platforms to allow flexibility
in mission planning and resource scheduling in response to
hardware and algorithm failures.

2.1 Panoramic Imaging

Effective combinations of transduction and image pro-
cessing is essential for operating in an unpredictable envi-
ronment and to rapidly focus attention on important activ-
ities in the environment. A limited field-of-view (as with
standard optics) often causes the camera resource to be
blocked when multiple targets are not close together and
panning the camera to multiple targets takes time. We em-
ploy a camera with a panoramic lens2 to simultaneously de-
tect and track multiple moving objects in a full 360-degree
view [4, 10, 13].

Figure 1. Original panoramic image (768 x 576)

Figures 1, 2, and 3 depict the processing steps involved
in detecting and tracking multiple moving humans. Fig-
ure 1 shows one of the original panoramic images from a
stationary sensor. Four moving objects (people) were de-
tected in real-time while moving in the scene in an un-
constrained manner. A background image is generated au-
tomatically by tracking dynamic objects through multiple
frames. The number of frames needed to completely build
the background model depends on the number of moving
objects in the scene and their motion. The four moving ob-
jects are shown as an un-warped cylindrical image of Fig-
ure 2, which is a more natural panoramic representation for
user interpretation. Each of the four people were extracted
from the complex cluttered background and annotated with
a bounding rectangle, a direction, and an estimated distance
based on scale from the sensor. The system tracks each
object through the image sequence as shown in Figure 3,
even in the presence of overlap and occlusion between two
people. The dynamic track is represented as an elliptical
head and body for the last 30 frames of each person and
the final position on the image plane is illustrated in Fig-
ure 2. The human subjects reversed directions, overlapped,

2PAL-3802 system, manufactured by Optechnology Co.
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Figure 2. Un-warped image, four moving people detected

Figure 3. Track through image sequence for the last 32 frames

and occluded on another during this sequence. The vision
algorithms can detect self-motion of the robot, change in
the environment, illumination, and sensor failure, while re-
freshing the background accordingly. The detection rate
of the current implementation for tracking two objects is
about 5Hz.

The motion detection algorithm relies heavily on the ac-
curacy of the background model at any given time in order
to detect moving objects. Types of changes in the back-
ground can be broadly grouped into two categories.

� changes due to the illumination affecting pixel inten-
sities at a fine scale; and

� changes of surfaces in the environment such as the
movement of objects.

It is quite difficult to take care of both cases simultane-
ously because the first type requires a constant update while
the second type requires a context-dependant update. The
low-level background estimation procedure is quite simple.
The constant update is done on those regions of the image
that are not classified as a moving object by the motion de-
tection algorithm. We track each region and keep a history
of velocity for each as well. When the velocity falls below
a threshold and remains so for a period of time, it becomes
a suitable candidate for part of the background. The as-
sumption is made that humans will be not be still for a long
period of time. Therefore, they do not become part of the
background. Similarly, only when the velocity of an ob-
ject exceeds a threshold, is it classified as a possible human
subject. This helps to avoid detecting some objects that
should remain part of background but are not completely
stationary, like the motion of tree branches, or the flicker of
a computer monitor.

The adaptive background update improved the perfor-
mance of the panoramic sensors considerably. The above

adaptation only provides a low-level mechanism to handle
the problem of maintaining an accurate background model.
A more elegant way would be to use the context as inferred
by the reasoning at higher levels of knowledge-based plan-
ning where all resources available might be employed. For
example, an unconscious human will be still, so the low
level will infer this as the background appearance. How-
ever, using the pyroelectric sensor, we might know where
the human is, particularly if the previous motion of that
body had been detected. This information could be passed
to the vision sensors to update the background accordingly.

2.2 Pyroelectric sensor
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Figure 4. Pyroelectric sensor.

The pyroelectric sensor3 is a Lithium Tantalate pyro-
electric parallel opposed dual element high gain detector
with complete integral analog signal processing [3]. The
detector is tuned to thermal radiation in the range that is
normally emitted by humans. Since the pyroelectric de-
tector itself only responds to changes in heat, the detector

3Model 442-3 IR-EYE Integrated Sensor, manufactured by Eltec In-
struments
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must be scanned. As shown in Figure 4, a thermal target is
identified as a zero crossing in the sensor’s data stream. We
have implemented such a sensor on a scanning servo motor
with two control modes; the sensor may saccade to a region
of space designated by another sensor or pair of sensors,
and it can track the thermal signature (even when the sub-
ject is still) by oscillating around the target heading. The
result is a sensor that responds quite precisely to human
body temperature but with a rather poor lateral bandwidth.
This is due primarily to the scanning required to measure a
zero crossing. To use this sensor appropriately, it must be
applied only when the predicted lateral bandwidth of the
subject is relatively small.

2.3 Stereo Head System

The stereo head platform4 is a high-performance binoc-
ular camera platform with two independent vergence axes.
As shown in Figure 12, it has four mechanical degrees of
freedom and each lens has three optical degrees of freedom
[6].

There are several state-of-the-art tracking algorithms in
the literature [1, 9, 2]. Our tracking algorithm uses one of
the cameras as an active eye and the other as an passive eye.
The active eye detects subsampled pixels of greatest change
in intensity between two consecutive frames. The passive
eye correlates multi-resolution fovea with the frame from
the active eye. The stereo head is then servoed to bring the
pixel of greatest change into the fovea of the active eye.
Subsequently, the passive eye is verged to point its fovea
to the same world feature as the fovea of the active eye,
extracting the spatial location of the object.

The accuracy of the spatial location of the object is de-
pendent on its distance from the stereo head system. This
algorithm can only track single moving objects.

2.4 SACCADE-FOVEATE B-Pgm for Recover-
ing Heading

The most primitive software process in this approach
is an asymptotically stable closed-loop controller [5, 8].
Controllers suppress local perturbations by virtue of their
closed-loop structure. Some variations in the context of
a control task are simply suppressed by the action of the
controller. Controllers also provide a basis for abstraction.
Instead of dealing with a continuous state space, a behav-
ioral scheme need only worry about control activation and
convergence events. When a control objective is met, a
predicate is asserted in an abstract model of the system be-
havior. The pattern of boolean predicates over a working
set of controllers constitutes a functional state description
in which policies can be constructed. The “state” of the
system is a vector of such functional predicates, each el-
ement of which asserts convergence for some control law

4BiSight System, manufactured by HelpMate Robotics, Inc.

and resource combination. The state vector also, therefore,
represents the set of discrete subgoals available to a robot
given these native control laws and resources.

Two closed-loop primitives are employed for motion
tracking (see Figure 5).
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Figure 5. Closed-Loop Primitives for Controlling At-
tention.

The first, saccade, accepts a reference heading in space
and directs the sensor’s field-of-view to that heading. The
second, foveate, is similar except that it accepts heading
references determined by the sensor’s signal. For example,
the pyroelectric sensor scans a small region centered on the
current gaze and identifies the zero crossing in the sensor
output. The heading to the zero crossing is used as the ref-
erence heading to control the sensor’s gaze. Within band-
width limitations, the result is that the pyroelectric sensor
tracks the moving thermal source.

Localizing and tracking the motion of objects in the
world is an important, reusable behavior that can be real-
ized a number of different ways using a variety of different
sensors. Each sensor in a stereo pair recovers the heading
to a feature in the environment. When the imaging geom-
etry of the pair is suitable, the sensors can, in principle, be
used to triangulate the spatial location of the feature. More-
over, the control process for each sensor can be completely
independent of the other sensor processes. We have hand-
crafted a B-Pgm for accomplishing this task that is para-
metric in sensory resources. This B-Pgm is illustrated in
Figure 6 - it represents a family of run-time hardware con-
figurations for estimating the location of moving objects in
space.

SACCADE−FOVEATE B−Pgm:

[ No Target ]
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f f
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[ Sensor  Fault ]

[ Target Lost ]
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Figure 6. Behavior Program for Detecting and Mea-
suring the Heading to a Motion Cue.
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The state in the nodes of Figure 6 is the convergence sta-
tus of the saccade controller,

���
, and the foveate controller,���

. That is, if
� �

is converged and
���

is not, then the state
of the saccade-foveate process is ��� . An � in the state
representation represents a “don’t care” or “don’t know”
condition.

The saccade-foveate B-Pgm (or template) for behavior
relies on a concurrent “saccade-foveate” approach. This
strategy begins by directing a sensor 	�

��� to saccade
to an interesting region of space. If this process fails for
some reason, it is presumably an error in the motor com-
ponent for the sensor and it reports a fault. If no hardware
fault is detected and the sensor achieves state ��� , then an
independent, periodic, closed-loop process

���
is engaged

whose goal it is to bring the centroid of the local motion
cue to the center or fovea of sensor 	 
 ’s image plane. If no
motion cue is detected, then a report of “no target” is gen-
erated. If a target motion cue is detected and foveated, then
the sensor achieves state ��� where the target is foveated,
is actively tracked, and which likely is no longer at the po-
sition specified by the original saccade. As long as sub-
sequent foveation cycles preserve this state, a heading to
the motion cue is reported. If, however, the sensor state
becomes ��� , then the target may be moving too quickly
and a “target lost” report is generated. When two sensors
are simultaneously in state ��� , then the pair of active B-
Pgms are reporting sufficient information for triangulating
the spatial location of this motion cue. Under these cir-
cumstances, this B-Pgm produces a hypothesis regarding
the location of a motion cue. Each unique resource allo-
cation 	�
���	������ produces hypotheses of varying quality
depending on the context of the localization query.

This policy does not rely on specific output type. In
fact, while incorrect correspondence can lead to anomalous
results, cross-modality can be used to advantage. For ex-
ample, if the location is computed from consistent visual
motion and pyroelectric information, then we may detect
“warm-moving” bodies. Such a strategy may be attractive
when detecting and localizing human beings as opposed to
other types of moving objects.

2.5 “Virtual” Stereo Pairs

Any fixed-baseline stereo vision system has limited
depth resolution due to the imaging geometry, whereas a
system that combines multiple views from many station-
ary or movable platforms allows a policy to take advan-
tage of the current context and goals in selecting view-
points. A “virtual stereo” policy is a policy that en-
gages different sensor pairs as the target moves through
ill-conditioned sensor geometries. Although this policy is
more flexible than a fixed pair, this approach requires dy-
namic sensor (re)calibration and accuracy in the depth of
a target is limited by the quality of calibration. The vir-

tual stereo strategy may be particularly effective with a pair
of mobile panoramic sensors because they have the poten-
tial of always seeing each other and estimating calibration
parameters[13]. Once calibrated, they can view the en-
vironment to estimate the 3D information of moving tar-
gets by triangulation, and maintain their calibration during
movement by tracking each other. If two panoramic vi-
sion sensors can see each other and at the same time see
the target motion cue, then they can be used to estimate
the bearing and distance of the target without any off-line
calibration.

� 
����  
!#"%$'& 
(��)+*���,

 
!#"%$#& 
(� ) & �-
/. * 
 )0* � , ���� 

!#"%$21 ��,
 
!#"%$2143 , (1)

where
� 
 is the distance between the target and the first

camera, � is the distance between the two cameras, *5
 and
* � are the bearings of the target in image 1 and image 2 re-
spectively, and

& 
6� and
& �-
 is the image of camera 1 in im-

age 2, and camera 2 in image 1 respectively. Several practi-

Figure 7. Panoramic stereo geometry

cal approaches to estimate distance and angles between two
panoramic sensors have been proposed in [13]. The error
of
� 
 can be estimated by partial differentials of Equation

1 as

7 � 
 �
8888  
!#"%$21 � ,
 
!#"%$21 3 ,

8888 7 � . �
8888  
!#"%$2143 . 1 � ,
 
!#" � $21 3 ,

8888 7 1 (2)

where
7 � is the distance error, and

7 1
is the average an-

gle error. The smaller the angle
1 3

and/or B, the larger is
the error. Notice that

1 3
and B have some inherent depen-

dency. Given the distance
� 
 and

� � , the change of
1 3

and B are in the same direction (increasing or decreasing).
We have developed the algorithms for mutual calibration

and 3D localization of motions using a pair of panoramic
vision systems each running the saccade-foveate B-Pgm.
The first implementation has been carried out by cooper-
ation between two stationary cameras. Figure 8 shows a
stereo image pair from two panoramic sensors.
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Figure 8. 3D localization by the panoramic stereo system

2.6 Peripheral and Foveal Vision Integration

The human eye has a very wide-angle low resolution
field in its peripheral view and a very high resolution nar-
row field in its foveal view, a combination that works coop-
eratively in a highly robust manner. We can find a moving
object within the peripheral field of view, and then start
a tracking behavior by peripheral-foveal cooperation. The
key point here is the natural cooperation of peripheral and
foveal vision as a real-time behavior operating within a
common coordinate system.

As we consider a computer implementation of this be-
havior, we note differences with human capability. Humans
must rotate the head so that the peripheral system covers
the moving object in its field of view. Furthermore, mul-
tiple objects in very different directions cannot be tracked
simultaneously. In our Track Human Containment Unit,
the panoramic-panoramic sensor pair (or any other pair ap-
plicable under the run-time context) can provide the spa-
tial reference for a saccade-foveate B-Pgm on a standard
zoom camera mounted on a small pan/tilt platform. The
pan/tilt/zoom imaging system may then undergo a saccade
to the interesting motion cue. From here it can foveate on
the cue and zoom if necessary for detailed processing.

High resolution color images obtained from the
pan/tilt/zoom camera can be used to determine the iden-
tity of the object of interest. In particular, a challenging
problem is to separate and track individuals in a group (or
even a crowd). Using contour extraction algorithms based
on motion cues, the pixels that correspond to the object can
be extracted from the background.

Our general approach is to apply suitable local image
operators to the image to determine the relevant features
of the object. Each known object is represented as a his-
togram of these local features. The histogram of the object
being tracked can be matched with the histograms of other
known objects from a database in order to recognize the ob-
ject. Object recognition is important when there are mul-
tiple objects being tracked. When the paths of two mov-
ing objects intersect, an ambiguity arises as to whether the

paths did, indeed, cross or whether both objects turned back
upon meeting. We presented such a situation in Figures 2
and 3.

We have successfully set up a peripheral and fovea vi-
sion system, and implemented a cooperative algorithm for
processing moving objects. The system detects any moving
object in the view of the panoramic camera, and tracks and
identifies it through the zoom camera. If there are multi-
ple motion trackers orchestrated in the Human Tracker CU
and multiple pan-tilt zoom cameras in a distributed sensor
network of stationary and moving platforms, the function-
ality of the system should respond gracefully in the face of
hardware and algorithm failures by deploying applicable
subsets of sensors.

Figure 9 illustrates the image resulting from such a pro-
cess where the spatial reference to a motion cue is provided
by the panoramic-panoramic image pair presented earlier
in Figure 8. The suspicious character in this panoramic
image pair has been scrutinized successfully using the
pan/tilt/zoom camera.

Figure 9. A close up (zoom) image of the Human
Subject localized using a panoramic-panoramic sen-
sor pair.
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3 The Containment Unit

B-Pgms can be used to coordinate the behavior of a fixed
set of resources. In [7], we show how to build policies au-
tomatically using reinforcement learning that approach op-
timal policies for a fixed resource allocation. The Contain-
ment Unit (CU) is an active entity designed to represent a
family of optimal contingency plans parameterized by re-
source commitments. Its objective is to “contain” faults. A
fault is generally construed to be any functional violation of
the specified behavior associated with the containment unit:
real-time constraints, liveness of constituent hardware, or
performance constraints. If a sensor fails, it is the role of
the containment unit to select an alternative behavioral pro-
gram to provide the same type of information and to inform
the process that activated the CU of the impact on the ex-
pected performance. Containment units, therefore, manage
a set of parametric B-Pgms given resource specifications
and report the property associated with the CU and the ex-
pected quality of the result. The CU monitors fault condi-
tions and responds autonomously to produce the informa-
tion requested by a higher-level CU.
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     B−Pgm 
  repository

context
report:
   property
   performance  

reports

MEM

        CU 
SUPERVISOR

    state
estimation

R: resource
    allocation

LEVEL k
Containment Unit: 
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LEVEL k+1
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*
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     B−Pgm 
  repository

        CU 
SUPERVISOR

R’      R

Figure 10. The Structure of a Containment Unit.

The structure of a CU is presented schematically in Fig-
ure 10. Multiple instances of a CU may be active concur-
rently, each with a resource specification that determines
the range of variation permitted locally in the strategy for
executing the CU directive. Global resource constraints
are achieved by limiting the range of autonomy each CU
enjoys through careful specification of its proprietary re-
sources. The set of alternative B-Pgms available to the CU
represents all possible coordinated sensory and motor poli-
cies for achieving the objective with systems resources. In
general, these policies may be applicable only in prescribed
contexts. For example, adequate illumination may be nec-
essary to employ those B-Pgms with vision sensors, or lim-

ited target velocity may be required in order to track with
a scanning pyroelectric sensor. These “contexts” can be
loaded when a CU is activated and then verified at run-
time, or they may be recovered by monitoring the active
B-Pgm’s performance. An inappropriate run-time context
can be used to reconfigure the CU locally and/or passed
upward to the process that activated the CU.

3.1 CU Supervisor: Domain-Independent Be-
havioral Expertise

Some aspects of a particular B-Pgm’s performance in
situ are determined entirely by attributes of the participat-
ing resources. The most obvious example of critical local
state is the liveness of the participating hardware. Other
locally determined attributes can also be important with re-
spect to overall performance. Consider a pair of vision sen-
sors performing as a virtual stereo pair to localize a moving
target. Localization will be poor if the uncertainty in the
position of the participating sensors is large or the saccade-
foveate B-Pgm may behave poorly if the target approaches
a collinear spatial relationship with the sensor pair. These
conditions are entirely determined by examining attributes
of the sensors (their relative spatial arrangement) and the
result of the B-Pgm coordinating them (the target position).

Circumstances such as these are completely determined
in the local state of the CU and should be handled locally
without higher-level deliberation. The CU depicted in Fig-
ure 10 contains a local supervisor that accomplishes this
objective. Some of the policies engaged by the supervisor
can be hand-coded based on knowledge regarding the in-
teractions between resources and/or known deficiencies in
software processes used to respond to feedback from the
world. We will develop an example of the CU supervisor
in Section 5.

3.2 Context: Domain-Dependent Behavioral
Models

Open environments present data sets to sensorimotor
processes that cannot be predicted at process configuration
time in general and must be observed at run-time. When
peculiar or unexpected environments cause the behavior of
the system to deviate from expectations, a higher-level re-
configuration must modify system performance while re-
maining within specifications. If a specific B-Pgm proves
to be inadequate in a particular run-time context, the con-
text is passed upward in the control hierarchy to a process
manager which may choose to reinstantiate the CU with a
different resource specification. Over time, some of these
reconfiguration decisions that depend strongly on control-
lable system components might be compiled into appropri-
ate CU supervisors. However, other contexts will be de-
termined by the run-time environment, and the deliberative
process planner must model these dependencies at a higher
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level. We are studying mechanisms where the process de-
scription can incrementally model these environmentally
determined contexts and manage resources so as to recover
critical run-time, environmentally determined contexts in
the course of the mission.

In self-adaptive software systems, an additional dimen-
sion of complexity in decision-making and predictability
is introduced, namely, adaptive changes must be accom-
plished with some assurance of correctness and safety. Ex-
haustive formal methods, or detailed re-planning are often
too time consuming to be executed completely at run-time.
This system exploits a dynamic composability approach,
wherein possible execution models are pre-analysed at de-
sign time to determine which compositions could poten-
tially execute successfully. The approach also generates an
expectation of the successful completion of these compo-
sitions under different anticipated contingencies (including
hardware faults, algorithm failures, and deviations from ex-
pectations). This pre-analysis will greatly reduce the over-
head of dynamic decision making, by ruling out alterna-
tives unlikely to be fruitful and by guiding the search pro-
cess at run-time with this composability information. With
this, many of the estimates can be tightened and more ef-
ficient plans can be generated. Thus, when a fault is re-
ported, the Containment Unit executes a search over the
repository of available B-Pgms and chooses the one whose
pre-analized composability information is most appropriate
for the task, state of the system, and state of the world.

The memory structure illustrated in Figure 10 records
the reported results of all participating resources, estimates
the state information required by the local supervisor, and
supports interpretation and reporting actions generated by
the CU. Task specific information such as target loca-
tion and current fault conditions are stored. The struc-
ture is maintained by a communication protocol over in-
ternet sockets between the active B-Pgms and the CU. If
resources reside on disparate architectures and operating
systems, the memory structure will also provide the CU
with a common communication interface to all subsystems.
The memory structure is also available to any process run-
ning on the host computer and forms the basis for the High
Level Interface.

4 The Little-JIL Agent Coordination Lan-
guage

Little-JIL [LJIL-ICSE] provides rich and rigorous se-
mantics for the precise specification of processes that coor-
dinate multiple agents [11, 12]. In the context of SAFER,
the agents consist of individual sensors, individual robots,
or combinations of these. Little-JIL provides constructs for
proactive and reactive control, exception handling and re-
source management.

A Little-JIL process defines a high-level plan to coor-
dinate agents to act as a loose team. A process is con-
structed of steps that are hierarchically decomposed into
finer-grained substeps. The steps and substeps are con-
nected with dataflow and control flow edges. Each step
may have a resource declaration identifying the resources
needed to carry out that step. These resources include
the sensors and robots but may also include computational
platforms and communication hardware to allow reasoning
over the sharing of these resources among computationally
and communicationally expensive algorithms.

A process typically specifies parts of the coordina-
tion quite precisely while leaving some opportunities for
choices to be deferred until runtime. For example, pre-
cise resource allocation decisions are typically deferred to
runtime (or a pre-runtime analysis stage). In this way a
step may be implemented in one of several ways, each of
which uses a different collection of resources. The selec-
tion of which choice is most appropriate may depend upon
which resources are available at that time, how quickly we
must perform the computation, how precise a result we
must get, and the physical environment at the time of ex-
ecution. These high-level decisions that require reasoning
across the collection of loosely-coupled robots and sensors
are the types of decisions made within the process.

The process also contains a reactive element. This is
particularly useful for exception handling. For example, a
certain amount of reaction can be handled within the con-
tainment units by dynamically selecting the appropriate B-
programs. Some situations, however, require higher level
support. A simple example is that of a timeout. We may
want to instantiate a particular containment unit for a lim-
ited amount of time. To do this we inform the contain-
ment unit of a timeout. When the timeout occurs, the pro-
cess reacts by choosing another activity based upon the re-
sults seen thus far. Another example occurs with a process
intended to track multiple people. With such a process,
we might want to always have one sensor responsible for
watching for new motion entering at a door, while allow-
ing the remaining resources to track targets already in the
room. If a new motion enters, the process reacts by reas-
signing resources. The actual selection of resources and
containment units and thus the actual instantiation of the
system is made by the integrated capability of robot plan-
ning and scheduling technologies whose description is out-
side the scope of this paper.

The Little-JIL process control language as discussed
above, provides a powerful means of exploiting knowledge
to structure planning and learning by focusing policy for-
mation on a small set of legal programs. Moreover, at lower
levels, new and enhanced processes are constructed. The
objective is to constantly optimize and generalize the ac-
tive B-Pgm during training tasks, and to return it at the end

8



Figure 11. Sample Little-JIL Process Description for Tracking a Human Subject.

of the task better than we found it. These B-Pgms actually
consist of many coordinated primitive controllers but are
thought of as discrete abstract actions. Subsequent plans
and learning processes can exploit this abstraction.

Figure 11 shows a sample Little-JIL process that uses
sensors to track multiple humans. We assume that this pro-
cess specification is in the context of a partial model of the
run-time environment. The root step of the process is Track
Humans. This step is decomposed into two steps that run
concurrently (denoted by the blue parallel lines). One step
is to track an individual human while the other step is to
watch the door. The Watch Door step requires use of the
panoramic camera.

Track Human is a choice step. Dynamically, the system
will decide which of the three substeps to use. This deci-
sion will be based upon which resources are available, what
time constraints there are on the tracking, and contextual
issues, such as whether there is good lighting or whether
the target is moving quickly. One might easily imagine
many more than three choices here. Each choice requires
one or more resources and has some expected performance.
The scheduler and runtime system use knowledge about the
context to assist in making the decision.

If another human enters the room, this results in an event
that is handled by the second Track Human step. This is
simply a reference to the original track human step and will
result in a new instance of Track Human starting with a
new set of resources. Of course, when a new human en-
ters the room, it could be that the existing resources are all
being used to track the people that are in the room. This
would result in an exception causing some replanning and
reallocation of resources to occur. Other exceptions can be
used to adapt locally (within the CU) during execution. For

example, if there had been normal lighting and the lights
were turned off, we would expect an exception within the
currently active containment units that employ vision sen-
sors.

5 SAFER Experimental Platform

In our experimental platform, we have implemented
three types of motion detectors that are deployed at fixed
and known positions in an indoor office-like environment.
The platform consists of an articulated stereo vision sys-
tem, and scanning pyroelectric sensor, and two panoramic
vision sensors. In each instance of the saccade-foveate B-
Pgm observations are collected from sensor pairs that are
sufficient to determine a spatial location of the moving fea-
ture in the field of view. This family of functionally equiv-
alent programs produces a spatial estimate of a motion cue
with varying quality that could serve as a spatial position
reference to a subsequent sensory or motor control task.
Indeed, combinations of these strategies are themselves B-
Pgms with reserved resources for corroboration or for fault
tolerance. Which of these to use in a particular context is
dependent on the task, the resources available, and the ex-
pected performance based on accumulated experience.

5.1 Designing the CU Supervisor for Tracking
Human Subjects

The CU Supervisor determines which B-Pgm (sensor
pair) is recommended for triangulation and tracking give
the current state of the process. In our demonstration, there
are six unique pairs of sensors available. A state predicate
describes the “liveness” of each pair. For a given pair, if
both sensors are functioning and they are not in a collinear

9



Motion Tracking Sensors:

� 1 Pyroelectric Sensor;

� 1 Stereo Head Sensor;

� 2 Panoramic Vision Sensors.

Stereo Head

scanning

ROI

    Panoramic
Vision Sensors

pyroelectric

Figure 12. The “Smart Room” - Motion Tracking Platform.

configuration, the corresponding predicate is set to 1, oth-
erwise it is set to 0. This is the role of the state estimation
component of Figure 10. Given a pattern in the state vector
defining available sensor pairs, the CU supervisor always
chooses the pair of sensors with the highest value with re-
spect to the process’ objective function.

We have hand-crafted a Human Tracking CU supervi-
sor for engaging sensor pairs that deploys resources in the
following priority-based hierarchy:

� Panoramic-stereo head (camera 1);
� Panoramic-stereo head (camera 2);
� Stereo-head (camera 1 and 2);
� Panoramic-pyroelectric;
� Stereo-head (camera 1)-pyroelectric;
� Stereo-head (camera 2)-pyroelectric.

Each resource allocation in this hierarchy, in turn, instanti-
ates two concurrent containment units for tracking motion
with a single sensor. These subordinate CUs execute the
saccade-foveate B-Pgm described earlier and report to the
track human CU. Each CU in this hierarchical control pro-
cess has the authority to manage the resources reserved for
them.

5.2 Experimental results

The Human Tracking CU supervisor has been imple-
mented to control the various sensors in order to track a sin-

gle moving person seamlessly through failure modes cap-
tured in the liveness assertion. Some preliminary results
are presented below.

5.2.1 Accuracy and Repeatability Experiments.
To design any CU supervisor that depends on the coordi-

nated activity of multiple sensors, it is necessary to model
the performance of the individual sensors. We conducted
a series of experiments to determine the accuracy and re-
peatability of the sensors. At known spatial locations, a
motion cue was generated and observed from the different
sensors. It was observed that the panoramic sensors were
both accurate and repeatable, the stereo head is accurate but
not repeatable, and the pyroelectric sensor was repeatable
but not accurate. The data was also used to examine the
quality of triangulation on the motion cue by different sen-
sor pairs. As expected the quality degraded as the motion
cue approached the line joining a sensor pair or a collinear
configuration. Because such a configuration is not desir-
able we call this a collinear fault. Conversely, the quality is
best when motion cue is along a direction orthogonal to the
line joining a sensor pair.

5.2.2 Tracking a Human Subject.
The next experiment evaluated the complete task of

tracking a single moving person using combinations of the
four sensors. The results are shown in Figures 13, 14,
15 and 16. Figure 13 shows the tracks of Panoramic-
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Figure 13. Motion Tracking for the Pyroelectric-
Stereo head and Pyroelectric-Panoramic sensor pairs
in the “Smart Room.”.

Pyroelectric pair (
�����

) and Pyroelectric-Stereo head pair
(
�����

). As the motion track crosses collinear sensor geome-
tries, the performance degrades as expected.

Figure 14 shows the tracks of Panoramic-Stereo head
pair (

� ���
) and Stereo head alone (

� ���
). Target tracking us-

ing stereo head alone can be quite bad due to the small
stereo baseline and the mechanical properties of the Stereo
Head platform [2].

Figure 15 shows the localization results using the
Panoramic virtual stereo pair (

���	�
) produces very good re-

sults for large regions of the room. This sensor pair is there-
fore highly reliable, leading to its priority in the CU super-
visor for the task. When these resources are available, they
are well-advised both for tracking precision and because of
the complete field of view they provide.

The last example show the performance of the CU su-
pervisor which effects software mode changes in response
to liveness feedback from the sensors. This feedback ad-
dresses both hardware function and the collinearity fault.
Figure 16 shows that the Track Human CU supervisor was
effective in handling these run-time contexts. The observed
track was very to the true trajectory of the moving test sub-
ject.

The results demonstrate that the hierarchical architec-
ture is capable of handling faults at both lower level (i.e.
sensors) and higher level (i.e. context of the motion cue).
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Figure 14. Motion Tracking for the Panoramic-Stereo
head and Stereo Head sensor pairs in the “Smart
Room.”.

6 Summary, Conclusions, and Future Exper-
imental Work

Multi-robot scenarios present significant technical chal-
lenges regarding sensing, planning, computing, and soft-
ware methods and must support both reactivity and pre-
dictability. Ultimately, one of the most desirable charac-
teristics of a multi-robot system is its ability to adapt to
changes in the environment and to internal faults - in hard-
ware components and in end-to-end performance specifica-
tions. Thus, reconfigurability is critical.

Our current work presents some preliminary results to-
wards the responsiveness to novel data sets, adaptability
and robustness that are critical to a multi-robot application.
The CU supervisor that was assigned the task of tracking
a human was able to handle individual sensor faults (low-
level) as well as faults due to context of the motion-cue
(high-level) and seamlessly track the human. In conclu-
sion, our vertically integrated software environment can re-
configure resources dynamically depending on a variety of
failures, making the system robust.

6.1 Doorway Abstraction

In a real situation, the agents will have to cooperate with
each other and pool their sensory information and knowl-
edge to build a reliable model of their environment. To
demonstrate one such situation, we plan to give the agents
the task of doorway abstraction. The doorway is an inter-
esting thing to learn and incorporate it into the model be-
cause that is were motion cues of interest originate often.
A panoramic sensor could be useful in this task because its
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Figure 15. Motion Tracking for the Panoramic-
Panoramic sensor pair in the “Smart Room.”.

field of view is 360 degrees unlike other sensors which has
to saccade to a region of interest. The panoramic sensor can
maintain a certainty value for different regions in its field of
view. The value indicates the certainty of a doorway being
in that region. Whenever a motion cue appears or disap-
pears in a region, its certainty value is increased. This way
after certain period of time, a reliable model about doorway
could be built. Of course, some of these regions need not be
doorways but just simple occlusions. This can be handled
by using two panoramic sensors, one of which is moving
and can position itself from where it can corroborate the
presence or absence of doorway.

6.2 Multiple Target Corroboration

When there are multiple targets, the triangulation is no
more trivial. The different types of sensors come to our aid
is this situation. Like for example if panoramic sensor is
tracking two motion cues - say a person and robot, using the
pyroelectric sensor we can know that one of them is a per-
son and thus selectively track that motion of more interest
to us. Another scenario is when two motions cues intersect.
This problem is discussed earlier in Section 2.1. When the
scenario involves multiple humans, it is more challenging.
In this case, we plan to use a monocular camera to zoom
in on regions of interest as given by the panoramic sen-
sor, as shown in Section 2.6. This helps us to capture and
record signatures of these motion cues like color, shape etc.
The higher levels can reason over these and help to decide
which targets to triangulate on.
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Figure 16. Motion Tracking Performance during
Mode Changes in the Motion Tracking CU supervi-
sor..
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