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Null Space Grasp Control: Theory and Experiments
Robert Platt Jr., Andrew H. Fagg, Roderic A. Grupen

Abstract—A key problem in robot grasping is that of position-

ing the manipulator contacts so that an object can be grasped.

In unstructured environments, contact positions are typically

planned based on range or visual measurements that are used to

reconstruct object geometry. However, because it is difficult to

measure the complete object geometry precisely in common grasp

scenarios, it is useful to employ additional techniques to adjust or

refine the grasp using only local information. In particular, grasp

control techniques can be used to improve a grasp by adjusting

the contact configuration after making initial contact with an

object by using measurements of local object geometry at the

contacts. This paper proposes three variations on null space grasp

control, an approach that combines multiple grasp objectives

to improve a grasp. Two of these variations are theoretically

demonstrated to converge to force closure configurations for

arbitrary convex objects when grasping with two contacts. All

variations are found to converge in simulation. Robot grasping

experiments are reported that show the approach to be useful in

practice.

I. INTRODUCTION

A key problem in robot grasping is positioning the contacts
so that the necessary grasping forces can be applied. At each
contact, the forces that can be applied depend on the local
surface characteristics, including object surface normal and
curvature. In unstructured environments, visual occlusions and
sensor error make it difficult for a robot to measure the exact
surface geometry of an object to be grasped before making
contact. Therefore, the contacts must be placed on the object
surface based on predictions that may be inaccurate. These
predictions must ultimately be verified by force feedback when
the robot actually makes contact.

When the predictions are wrong, it is advantageous to be
able to adjust the manipulator configuration based on the
sensed contact forces. Few approaches currently exist for
accomplishing this step. After the contacts are placed on the
object, how does the robot determine whether the grasp is
good enough? When it is not, what mechanism can be used
to displace the contacts toward better grasp locations? These
two questions are the focus of the current paper. We describe
key features of null space grasp control, a non-linear control
strategy that synthesizes a grasp by using local measurements
at the contacts to adjust contact configuration. The approach
is predicated on a mechanism for measuring object surface
normal in the neighborhood of each contact. Starting from an
arbitrary configuration of the contacts on (or near) the object
surface, measurements of the local object surface normals at
the contacts are used to calculate a contact displacement on the
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object surface. Our experimental work uses six-axis load cells
to measure the object surface normal while lightly touching
the object. A contact displacement control system realizes the
desired displacement by lightly sliding the contacts over the
object surface.

We build upon force residual and moment residual con-
trollers first proposed by Coelho and Grupen [1]. Coelho
proved a convergence result for regular convex prismatic
objects when the two controllers executed in a particular
sequence and showed experimental results on a robot manip-
ulator [2]. The current paper extends this work. First, we link
the grasp controller to unit frictionless equilibrium, a special
case of a force closure grasp. Second, we propose the null
space approach to grasp control where force and moment
residual controllers execute simultaneously. Three versions of
the null space control law are proposed that trade off sensory
requirements with speed of convergence:

• the exact null space grasp controller,
• the approximate null space grasp controller, and
• the switching grasp controller.

Convergence proofs are provided for the exact controller and
the switching controller. All three variations are compared
in simulation. Finally, robot experiments are presented that
demonstrate the approach to be a practical mechanism for
using local contact feedback to validate and improve robot
grasps.

II. RELATED WORK

A significant body of grasping research considers the prob-
lem of grasping in isolation from sensing considerations. This
research typically begins with the assumption that the object
geometry is known and that it is possible to sense object
pose. One research direction identifies sufficient geometric
conditions for a good grasp. For example, Nguyen proposed
searching the space of two-contact configurations for those
where a line connecting the two contacts lies inside friction
cones associated with both contacts. This idea is the basis
for algorithms that calculate two-contact force closure con-
tact configurations for two- and three-dimensional polyhedral
objects [3], [4] and curved objects [5], [6], [7]. This type of
approach was extended to four-fingered grasps of polyhedral
objects by Sudsang and Ponce who characterized four classes
of four-contact grasp configurations [8]. Given the constraints
associated with each grasp class, force closure grasps were
found using optimization techniques. These ideas can be
extended to in-hand manipulation by using the kinematics
of rolling contact to move between different geometrically
characterized grasp configurations [9], [10], [11].

Another approach to grasp planning finds grasps that op-
timize measures of grasp quality. As with the planning ap-
proaches above, these also generally ignore the sensing issue.
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For example, Li and Sastry use linear optimization techniques
to find contact configurations that optimize quality measures
associated with the eigenvalues of the grasp map (relationship
between contact loads and object loads) [12]. Kirkpatrick et al.
and Ferrari and Canny propose optimizing a quality measure
proportional to the radius of the largest sphere that can be
inscribed in the convex hull of contact wrenches [13], [14].
Mirtich and Canny propose efficient planning algorithms for
two and three contacts based on related quality measures [15].

In contrast to the above, a significant body of work com-
bines sensing and planning in a two-step process where
sensing occurs completely in advance of planning and control.
For example, several researchers estimate the silhouette of an
object to be grasped from different camera images and use
the resulting spatial silhouette as input to a grasp planning
algorithm. For the purposes of planning, the silhouette may
be approximated by piecewise segments [16], [17], [18],
smooth curves [19], or convex polyhedra [20]. In this context,
some researchers also consider the feasibility of various grasp
configurations in terms of manipulator kinematics [21], [22].

The application of tactile sensing to grasping in this paper is
related to prior work that uses tactile information to estimate
aspects of object shape and relative pose. Early work by
Allen and Michelman modeled the surface of an unknown
object as a superquadric using visual and tactile measure-
ments [23]. Jia and Erdmann estimated contact position and
object twist using an observer that was theoretically and
empirically demonstrated to converge [24]. Haidacher and
Hirzinger experimentally demonstrated an object localization
method that matches tactile measurements to a best-fit object
configuration [25]. Several researchers have solved a similar
problem by applying statistical methods [26], [27], [28].

It is notable that all the work described above explicitly
or implicitly divides grasp synthesis and manipulation into
temporally separate perceptual and control processes. In con-
trast, the null space grasp control method characterized in this
paper uses measurements continuously throughout the grasp
synthesis process to adjust manipulator contact configuration.
Our approach is more closely related to the work of Son,
Howe, and Hager who combine visual and tactile “control
primitives” to grasp a rod using a two-fingered gripper [29].
Using continuous tactile feedback, a gripper is re-oriented
about a single axis so that it becomes better aligned with
an object for grasping. Similarly, Yoshimi and Allen visually
estimate the relative configuration of the object and manipula-
tor and servo into a desired grasp configuration [30]. Another
example of this type of approach are the provably-correct reac-
tive grasping algorithms proposed by Teichmann and Mishra.
These algorithms displace two or three manipulator contacts
into a grasp configuration based on continually updated tactile
feedback [31].

III. GRASP OBJECTIVE FUNCTIONS AND FORCE CLOSURE

The key idea of grasp control is to displace the contacts
from an initial configuration on the object surface into a grasp
configuration using measurements of local object geometry at
the contacts. The grasp controller reaches grasp configurations

by following the gradients of two objective functions: the unit
frictionless force residual and the unit frictionless moment
residual. These two objective functions lead the system into
unit frictionless equilibrium configurations. This section intro-
duces the notion of unit frictionless equilibrium as well as the
two objective functions and relates them to force closure, a
common quantitative measure of a grasp.

A. Grasp Objective Functions

For the purposes of the following development, it is useful
to introduce the notion of wrench. A wrench, w = (fT

,mT )T ,
is a screw that represents a combined force, f , and moment, m.
Assume that all wrenches are expressed in a reference frame
attached to the object located at the centroid of the contacts.
A system of k contacts touching an object is in equilibrium
when the sum of the wrenches applied to the object at each
contact (the contact wrenches) is zero:

k�

i=1

wi = 0, (1)

where wi is the i
th contact wrench. We define unit frictionless

equilibrium to be the special case of equilibrium were all
contacts apply unit forces normal to the object surface:

Definition 1: A system of contacts is in unit frictionless
equilibrium when it is in equilibrium and the contact wrenches,
w1 . . .wk, satisfy:

wi =
�

n̂i

ri × n̂i

�
,

where n̂i and ri are the unit object surface normal and the
position of the i

th contact, respectively.

When a two-contact system is in unit frictionless equilib-
rium, the contacts are in an antipodal configuration (parallel
and intersecting contact normals). When a three-contact sys-
tem is in unit frictionless equilibrium, the contact normals lie
in a plane and intersect at a single point.

The proposed grasp control approach reaches unit fric-
tionless equilibrium by descending the unit frictionless force
residual and moment residual error functions. The squared unit
frictionless force residual is defined to be:

�f =
1
2
fT f , f =

k�

i=1

n̂i. (2)

When the unit frictionless force residual is zero, then all of
the unit normals are balanced. Such a configuration will be
known as unit frictionless force equilibrium. The squared unit
frictionless moment residual is defined to be:

�m =
1
2
mT m, m =

k�

i=1

ri × n̂i. (3)

When the unit frictionless moment residual is zero, then the
system is in unit frictionless moment equilibrium.
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B. Relationship to Force Closure
Force closure is a way of quantifying the term “grasp.” A

force closure contact configuration can resist arbitrary loads
applied to the object (from gravity or other sources) by
applying appropriate combinations of contact wrenches [32].
For two or more contacts, unit frictionless equilibrium is a
special case of force closure for any non-zero coefficient of
coulomb friction. This was demonstrated for three or more
contacts by Ponce [33] and can be extended to two contacts
if it is assumed that the contacts are able to apply frictional
torsional loads about the contact normals (this is typically
known as the “soft contact” assumption [34]):

Lemma 1: When at least one contact can apply frictional
torsional loads about the contact normal as well as tangen-
tial frictional forces, then a sufficient condition for three-
dimensional 2-finger force closure is non-marginal equilib-
rium.

A contact configuration is in non-marginal equilibrium
when it is in equilibrium and all contact wrenches are strictly
within (not on the edge of) their respective friction cones.
Since unit frictionless equilibrium grasps apply forces only
along the surface normals (at the center of the associated fric-
tion cone), these grasps must therefore be force closure when
the contacts are able to apply positive tangential frictional
forces. Lemma 1 is proven in the Appendix.

IV. THE FORCE AND MOMENT RESIDUAL CONTROLLERS

Grasp control synthesizes grasps by displacing contacts over
the object surface into grasp configurations using local contact
feedback. This section describes the contact displacement
mechanism. It also describes the force and moment residual
control laws that are combined by null space grasp control.

A. Mechanism for contact displacement
Grasp control is predicated on a mechanism for measuring

the object surface normal near the contacts while displacing
them over the object surface. This can be accomplished in two
ways: 1) by touching the object lightly so as to make the nec-
essary measurements using force sensors without disturbing
the object, and 2) by placing the contacts near enough to the
object to be able to detect surface normal using non-contact
sensors.

Our experimental work takes the first approach by using
six-axis load cells mounted in the robot fingertips to measure
object surface normal and contact forces while touching the
object (see Section VII for hardware details). A simple torque
control law is used to touch the object lightly:

q̈
∗ = Kp(τ∗ − τ)−Kdq̇,

where q̈
∗ is a commanded finger acceleration calculated by

a proportional term on finger joint torque error, τ
∗ − τ , and

a damping term on actual joint velocity, q̇ [35]. Joint torque,
τ , is calculated using force measurements from the fingertip
load cell. While touching the object with the load cell, contact
wrench measurements coupled with knowledge of the convex

contact geometry are used to calculate the object surface
normal [36].

A potential problem with contact displacement while touch-
ing is that the process causes small unintended object displace-
ments. Although this was not a significant problem in our
experimental work (see Section VII), null space grasp control
can also be implemented without touching the object by
using non-contact proximity sensors. For example, Teichmann
and Mishra’s implementation of reactive grasping using a
parallel jaw gripper uses optical proximity sensors to measure
local object geometry without touching in the context of a
similar grasp displacement strategy [37]. Similarly, Walker and
Salisbury’s PMET manipulator uses optical proximity sensors
to measure distance to the object surface without touching.
Object surface normal is calculated by differentiating a series
of distance measurements [38]. Instead of optical sensing,
LIDAR might also be used to measure local object surface cur-
vature when the scale of manipulation is large enough. Finally,
in the future, new technologies such as electric field pretouch
sensing may be used in ways similar to the above [39].

B. Force Residual Controller
Assume that the controller interacts with a second-order

continuous spatial object with two or three contacts. The force
residual controller follows the negative gradient of a unit-
curvature approximation of the unit frictionless force residual
(Equation 2). Let the surface of the object be parameterized
by orthogonal parameter curves, u and v. Let ri(u, v) describe
the three-dimensional Cartesian position of the i

th contact
as a function of the parameter curves. Let ∇uri and ∇vri

denote ∂ri
∂ui

and ∂ri
∂vi

, the tangents to the u and v parameter
curves at contact i. Define the sense of the curves such that
(∇uri,∇vri, n̂i) forms a right-hand orthonormal coordinate
frame at each contact.

The gradient of the squared unit frictionless force residual
(Equation 2) with respect to these surface coordinates is:

∂�f

∂u
= fT

Jf , (4)

where u = (u1, . . . ,uk) is a vector describing the surface
coordinates of k contacts, f is the unit frictionless force
residual (Equation 2), and Jf = ∂f

∂u is the unit frictionless
force residual Jacobian.

Jf may be decomposed into k partial derivatives:

Jf =
�

∂f
∂u1

, . . . ,
∂f

∂uk

�
.

The i
th partial derivative can be expressed as follows:

∂f
∂ui

=
∂n̂i

∂ui

= (∇uri,∇vri) Ki,

where Ki is a 2 × 2 symmetric matrix of surface curvatures
for contact i. Therefore, the unit frictionless force residual
Jacobian is a matrix of surface tangents multiplied by a matrix
of surface curvatures:

Jf = (∇ur1,∇vr1, . . . ,∇urk,∇vrk)K

= ĴfK.



5

where K is a 2k × 2k symmetric block diagonal matrix
comprised of Ki for each contact and Ĵf is a matrix whose
columns are the object surface tangents at all contacts. Since
for the unit sphere, K is identity and Ĵf = Jf , we refer to Ĵf

as the unit-curvature frictionless force residual Jacobian.

contact centroidt3t 2t

1t

3t

2t

1

Fig. 1. The force residual controller calculates the force residual gradient by
assuming that each contact normal will change as if the contact were moving
on a sphere tangent to the object at the contact point. At each iteration of the
controller, the gradient is recomputed using the spherical assumption.

The force residual controller follows the negative gradient
of Equation 2 while assuming unit curvatures:

u̇f = −Ĵ
T
f f . (5)

To elucidate the effect of the force residual term of the grasp
controller, consider the force residual controller executing for
the planar rectangle illustrated in Figure 1. The force residual
gradient assumes that the contacts are moving on surfaces
with positive unit curvatures (i.e. spheres). The gradient with
respect to the two contact positions is illustrated by the dashed
arrows pointing tangent to the object surface. The controller
sends this displacement to a control mechanism for displacing
the contacts. On the next control cycle, the contacts will have
moved in the direction of the dashed arrows and the gradient
will be re-evaluated.

C. Convergence of the force residual controller
The force residual controller (Equation 5) can be shown to

converge to unit frictionless force equilibrium configurations
when grasping convex objects for two contacts. Consider the
following Lyapunov function:

V =
1
2
fT f . (6)

The gradient of Equation 6 with respect to surface coordinates
is:

∂V

∂u
= fT ∂f

∂u
= fT

ĴfK.

Therefore, the gradient of V̇f along controller trajectories is:

V̇ =
∂V

∂u
u̇,

= −fT
ĴfKĴ

T
f f .

Since K is always positive semi-definite for convex objects,
it is clear that V̇ is negative semi-definite.

Theorem 1: Let the object be convex, second-order continu-
ous with finite maximum curvature. Then the two-contact force

Fig. 2. Extruded object (dashed line) traced out by the center of a finger as
it moves over the box.

residual controller (Equation 5) converges to unit frictionless
force equilibrium when execution does not begin with both
contacts on the same face.

Proof: Since V̇ is negative semi-definite, the force resid-
ual controller (Equation 5) must be stable. It converges to
configurations where V̇ is zero: in unit frictionless force
equilibrium, when both contacts are on the same face, or when
the columns of K are orthogonal to Ĵ

T
f f . First, note that since

V̇ is negative semi-definite and V is at a maximum when
both contacts are on the same face, the system never reaches a
same-face configuration when a same-face initial configuration
is prohibited. Second, consider the situation where the columns
of K are orthogonal to Ĵ

T
f f . In this case, the object surface

at each contact is flat in its direction of motion. Each contact
continues to move along a flat surface until one contact reaches
a region of positive curvature and the gradient of the Lyapunov
function is again negative definite. While it is possible that
the contact may reach another region where the object surface
is flat in the direction of motion, V decreases every time a
contact passes through a positive curvature region. Therefore,
for objects with finite extent, V ultimately reaches zero in
finite time and we conclude that the controller converges to
unit frictionless force equilibrium.

The requirement by Theorem 1 for the object to be second-
order continuous theoretically excludes polygonal objects.
Nevertheless, these objects are not excluded in practice when
a manipulator with rounded contacts is used. In this case, it
is possible to define a corresponding extruded object that is
traced out by a point on the interior of the rounded contact
(see Figure 2). Configurations of the rounded contacts on the
actual object map onto point contact configurations for the
extruded object. See [15] for more detail on this argument.
Theorem 1 can be applied to the extruded object and, since
unit frictionless equilibrium configurations for the extruded
object can be shown also to be unit frictionless equilibrium
on the actual object, extended to the actual object.

D. Moment Residual Controller

The moment residual controller follows the gradient of
the unit frictionless moment residual while making a specific
curvature assumption. The gradient of Equation 3 is:

∂�m

∂u
= mT

Jm
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where
Jm =

�
∂m
∂u1

,
∂m
∂v1

, . . . ,
∂m
∂uk

,
∂m
∂vk

�
.

The partial derivative of the unit frictionless moment residual
with respect to ui is:

∂m
∂ui

= ∇uri × n̂i + ri ×
∂n̂i

∂ui
.

Rather than incorporating surface curvature information into
the moment residual gradient, the moment residual controller
sets the second term to zero, effectively assuming zero surface
curvature at the contacts:

u̇i = mT (∇uri × n̂i)
= −mT∇vri.

Coelho refers to this simplification as the “planar assump-
tion” [1]. Extending this argument to the entire moment
residual control law, we have:

u̇m = −Ĵ
T
mm, (7)

where

Ĵm = (−∇vr1,∇ur1, . . . ,−∇vrk,∇urk)

is the zero-curvature frictionless moment residual Jacobian.

a

t 0 t 1

t 1
t 0

t 2

t 2

b

Fig. 3. The moment residual controller calculates the moment residual
gradient by assuming that object geometry is a plane tangent to the object
at each point of contact. At each iteration of the controller, the gradient is
re-computed assuming a plane tangent to the current set of contact points.

To clarify the differences between the moment residual
control gradient (Equation 7) and the exact gradient, consider
the planar object in Figure 3. The approximation “thinks” that
the contacts will move as if the local surface were flat as
illustrated by the dotted lines. Following the gradient would
cause contact a to move to the left and contact b to move to
the right as illustrated by the dashed arrows.

V. NULL SPACE GRASP CONTROL

Null space grasp control is an approach to combining the
force and moment residual controllers in a way that realizes
force closure grasps for arbitrary convex objects. This section
proposes exact and approximate null space grasp control.
The exact method projects the moment residual controller
displacements into the null space of the gradient of the
unit frictionless force residual (Equation 2) and is provably
convergent for two contacts. Based on our simulations, this
approach reaches unit frictionless equilibrium configurations
faster than the other approaches studied in this paper. However,
since it is difficult to measure object surface curvature, this
method is difficult to implement. As a result, we also propose

the approximate null space grasp controller in this section and
the switching grasp controller in the next section.

The null space grasp controller assures that the moment
residual controller does not cause the system to ascend the
unit frictionless force residual by projecting moment residual
control into the null space of the unit frictionless force residual
gradient (Equation 4), ∂�f

∂u :

u̇∗ = −Ĵ
T
f f −N

�
fT

ĴfK

�
Ĵ

T
mm. (8)

Since

fT
ĴfKN

�
fT

ĴfK

�
ẏ = 0, (9)

for arbitrary contact displacements, ẏ, V̇ for this control law
is still negative semi-definite and the result of Theorem 1 is
unchanged.

A. Force and moment residual controllers for two contacts

This subsection introduces notation for two contacts that
simplifies the subsequent development of the force and mo-
ment residual controllers. Let the v parameter curve of the
object surface parameterization pass through both contacts at
an identical tangent such that ∇vr1 = ∇vr2. Then, the force
residual control gradient becomes:

u̇f = −





∇urT
1

∇vrT
1

∇urT
2

∇vrT
2



 f

= −





α

0
−α

0



 , (10)

where the substitution,

α = ∇urT
1 n̂2 = −∇urT

2 n̂1, (11)

has been made (see Lemma 2 in the Appendix for the
demonstration that ∇urT

1 n̂2 = −∇urT
2 n̂1).

For two contacts, the moment residual gradient is:

u̇m = −Ĵ
T
mm

= −





−∇vrT
1

∇urT
1

−∇vrT
2

∇urT
2



 (r1 × n̂1 + r2 × n̂2) .

Since the origin of the reference frame is at the contact cen-
troid, the two contact position vectors are opposite, r1 = −r2,
and the gradient becomes:

u̇m = −





rT
1 (∇ur1 −∇ur2)

rT
1 (∇vr1 − n̂2 ×∇ur1)
rT
1 (∇ur1 −∇ur2)

−rT
1 (∇vr1 − n̂1 ×∇ur2)



 .
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The notation in this equation and others to follow is simplified
with the following substitutions:

p = rT
1∇ur1, (12)

q = rT
1∇ur2, (13)

s = rT
1∇vr1, (14)

a = rT
1 (n̂2 ×∇ur1), (15)

b = rT
1 (n̂1 ×∇ur2). (16)

Then, the expression for u̇m is:

u̇m = −





p− q

s− a

p− q

b− s



 . (17)

B. Convergence of the null space grasp controller for two
contacts

Since it is already established that Equation 8 converges to
unit frictionless force equilibrium, all that remains is to show
that it also converges to unit frictionless moment equilibrium.
We establish this for two contacts. Consider the following
second-order continuous positive definite function defined over
two-contact configurations on convex objects where the system
is in unit frictionless force equilibrium:

W =
1
4
(r1 − r2)T (r1 − r2)

= rT
1 r1. (18)

For two contacts, the derivative of W with respect to surface
coordinates for two contacts is:

∂W

∂u
= 2





rT
1∇ur1

rT
1∇vr1

−rT
1∇ur2

−rT
1∇vr2





T

= 2





p

s

−q

−s





T

. (19)

Theorem 2: Let the object be convex, second-order con-
tinuous with finite maximum curvature. For two contacts,
the null space grasp controller converges to unit frictionless
equilibrium when execution does not begin with both contacts
on the same face.

Proof:
The gradient of W along the trajectories of the composite

null space controller is:

Ẇ =
∂W

∂u

�
u̇f + N

�
fT

ĴfK

�
u̇m

�

= −2(p + q)α− 2





p

s

−q

−s





T

A





p− q

s− a

p− q

b− s



 ,(20)

where A = N
�
fT

ĴfK

�
is a positive definite projection

matrix.
Note that A is never in the null space of u̇m or ∂W

∂u : A

projects to zero the component of u̇m that is parallel with

Ku̇f . Since K is composed of block diagonal positive definite
matrices, we have that

Ku̇f = −





κ11

0
−κ33

0



 α

where κ11 and κ33 are positive. In view of Equation 17, it is
clear that u̇m is never parallel with Ku̇f . Also, notice that p

is equal to q only when the two contacts are concurrent. Since
this is prohibited by the assumption that execution does not
begin with contacts on the same face, ∂W

∂u is never parallel
with Ku̇f .

We now show convergence to unit frictionless moment equi-
librium. Given Theorem 1 and the consideration in Equation 9,
we have that the null space grasp controller converges to unit
frictionless force equilibrium. As f approaches zero, Lemma 3
requires that α approaches zero and therefore that the first term
of Equation 20 approaches zero. In view of Lemma 4, ∂W

∂u u̇m

is always negative semi-definite. Since A is positive definite,
the second term of Equation 20 is also negative semi-definite.

As a result, Equation 20 is always negative semi-definite and
the controller converges to a configuration where Equation 20
is zero. Since A is never in the null space of u̇m or ∂W

∂u , the
second term of Equation 20 is zero only when ∂W

∂u u̇m is zero.
Since the two contacts are assumed never to be concurrent,
this only occurs when p, q, s, a, and b are zero. When this
happens, note that r1 = −r2 is normal to the surface tangent
at each contact and that m is therefore zero.

Theorem 2 can be combined with Lemma 1 to conclude
that the exact null space grasp controller converges to force
closure configurations.

C. Approximate null space grasp controller
The exact null space grasp controller (Equation 8) requires

knowledge of the object surface curvature, K, in order to
calculate the null space projection matrix, N (fT

ĴfK). Since
it may be difficult to measure local object surface curvature at
the contacts, we consider alternatives to the exact formulation
of the control law. One approach is the “approximate” null
space controller that projects the moment residual controller
into the null space of Ĵf :

u̇∗ = −Ĵ
T
f f −N

�
Ĵf

�
Ĵ

T
mm. (21)

This controller has not been proven to converge. However,
simulated results (see Section VII-A) suggest that it does
converge slower than the exact null space controller but faster
than the switching controller proposed in the next section. For
insight into how the controller works, consider the null space
projection matrix, N

�
Ĵf

�
. When a two-contact system is not

in unit frictionless force equilibrium, the rank of Ĵf is three
and the rank of N

�
Ĵf

�
is therefore one. The rank of the null

space projection term rises to two when f = 0. This suggests
that, similar to the switching controller, this controller allows
the moment residual term to converge faster after the system
reaches unit frictionless force equilibrium.



8

VI. SWITCHING GRASP CONTROL

Like the approximate null space grasp controller, the switch-
ing grasp controller does not require object surface curvature at
the contacts to be measured. When the unit frictionless force
residual is large it executes the force residual controller by
itself. Once the unit frictionless force residual falls below a
threshold, then the controller displaces the contacts according
to the sum of the force residual and the moment residual
control gradients. This controller is proven to converge to unit
frictionless equilibrium.

A. Switching grasp controller

The switching grasp controller switches between executing
the force residual controller when �f� > β and executing
the moment residual controller when �f� ≤ β. This is
accomplished using an indicator variable:

Na =
�

1 if �f� ≤ β

0 otherwise

The resulting controller is:

u̇a = u̇f + Nau̇m. (22)

B. Convergence of the switching grasp controller for two
contacts

In order to establish convergence, we evaluate the gradients
of V and W for the two cases, �f� ≤ β and �f� > β. The
derivative of V with respect to surface coordinates for two
contacts is:

∂V

∂u
=





α

0
−α

0





T

K.

When �f� > β, then Na = 0 and u̇a = u̇f :

V̇�f�>β =
∂V

∂u
u̇f

= −





α

0
−α

0





T

K





α

0
−α

0





= −(κ11 + κ33)α2
, (23)

where κ11 and κ33 are positive diagonal elements of K. The
gradient of W when �f� > β is:

Ẇ�f�>β = −2





p

s

−q

−s





T 



α

0
−α

0





= −2(p + q)α. (24)

Fig. 4. Cartoon of V and W over time during switching. At time τ , the
controller switches from Na = 0 to Na = 1, causing W to subsequently
decrease. At time τ + ζ, the controller switches back to Na = 0, causing a
possible increase in W . At time τ + ζ + γ, when the controller switches to
Na = 1 again, W is lower than it was at time τ .

When �f� ≤ β, then Na = 1 and u̇a = u̇f + u̇m. In this
situation, we have:

V̇�f�≤β =
∂V

∂u
(u̇f + u̇m)

= −





α

0
−α

0





T

K





p− q + α

s− a

p− q − α

b− s





= −(κ11 + κ33)α2 − (κ11 − κ33)(p− q)α
−κ12(s− a)α− κ34(s− b)α,

where κ11 and κ33 are positive diagonal elements of K, and
κ12 and κ34 are off-diagonal elements of K. The gradient of
W when �f� ≤ β is:

Ẇ�f�≤β =
∂W

∂u
(u̇f + u̇m)

= −2





p

s

−q

−s





T 



p− q + α

s− a

p− q − α

b− s





= −2(p− q)2 − 2s(s− a)− 2s(s− b)
−2(p + q)α. (25)

The following theorem establishes convergence for the
switching controller.

Theorem 3: Let the object be convex, second-order continu-
ous, with finite maximum curvature. Then the switching grasp
controller (Equation 22) converges to a threshold around unit
frictionless moment equilibrium. The size of the threshold can
be made arbitrarily small by decreasing β.

Proof:
To show convergence of m, we show that each time the

controller switches from Na = 0 to Na = 1, the value of W

decreases until a threshold proportional to β is reached. Let
τ be an arbitrary iteration of the controller when Na has just
switched from 0 to 1 such that �f� ≤ β or when the controller
has started execution in a configuration where �f� ≤ β. At
time τ + ζ, u̇f + u̇m has executed for ζ steps such that the
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last step caused �f� to cross the switching threshold such that:

Vτ+ζ ≤
1
2
β

2 + V̇
τ+ζ−1
�f�≤β ,

where V̇
τ+ζ−1
�f�≤β is the value of V̇�f�≤β at time τ + ζ − 1.

At this point, the controller switches to Na = 0 and u̇f

executes for another γ iterations until �f� ≤ β again. Suppose
that each of the γ iterations causes V to change by at least
V̇

min
�f�>β = −(κ11 + κ33)β2. Then, the maximum integer

number of iterations of u̇f required to bring V below 1
2β

2

is:

γ ≤ max

�
0,

�
Vτ+ζ − 1

2β
2

−V̇
min
�f�>β

��

≤
�
|V̇ τ+ζ−1
�f�≤β |

−V̇
min
�f�>β

�

≤ 2 +
Λτ+ζ−1

(κ11 + κ33)β
,

where

Λτ+ζ−1 = (κ11 − κ33)(p− q) + κ12(s− a) + κ34(s− b)

evaluated at time τ + ζ − 1.
Consider how W changes during the ζ iterations between

times τ and τ + ζ when Na = 1:

Wτ+ζ −Wτ = Ẇ
τ
�f�≤β + . . . + Ẇ

τ+ζ−1
�f�≤β

≤ ζẆ
τ+ζ−1
�f�≤β ,

where Ẇ
t
�f�≤β is the change in W caused by the t

th iteration
of the controller. The last inequality above uses the fact that
for small α, the magnitude of Ẇ�f�≤β is minimized for small
values of W (at time τ +ζ−1). Substituting Equation 25 into
the above and using Lemma 5, we have:

Wτ+ζ −Wτ ≤ 2ζ [−Hτ+ζ−1 + |p + q|β]
≤ 2ζ

�
−Hτ+ζ−1 + �r1�β2

�
,

where Hτ+ζ−1 = (p− q)2 + s(s− a) + s(s− b) is evaluated
at time τ + ζ − 1 (when it is largest) and we have used the
fact that the magnitude of f never exceeds β between time τ

and τ + ζ − 1.
Now, consider how W changes during the γ iterations

between times τ + ζ and τ + ζ + γ when Na = 0:

Wτ+ζ+γ −Wτ+ζ = Ẇ
τ+ζ
�f�>β + . . . + Ẇ

τ+ζ+γ−1
�f�>β

≤ γẆ
max
�f�>β ,

where, as above, Ẇ
t
�f�≤β is the change in W caused by the

t
th iteration of the controller and Ẇ

max
�f�≤β = maxt

�
Ẇ

t
�f�≤β

�
.

Using Lemma 5, we have:

Wτ+ζ+γ −Wτ+ζ ≤ 2γrmaxf2
τ+ζ ,

where fτ+ζ is the unit frictionless force residual at the begin-
ning of the τ +ζ controller iteration and rmax is the maximum
value of �r1� between time τ + ζ and τ + ζ + γ.

We can use Vτ+ζ to bound f2
τ+ζ :

f2
τ+ζ = 2Vτ+ζ

≤ β
2 + 2V̇

τ+ζ−1
�f�≤β

= β
2 − 2(κ11 + κ33)β2 − 2Λτ+ζ−1β.

Dropping the τ + ζ − 1 subscript from Λ, we have:

Wτ+ζ+γ −Wτ+ζ ≤ 2γrmax�
β

2 − 2(κ11 + κ33)β2 − 2Λβ
�

≤
�

4 + 2
Λ

(κ11 + κ33)β

�
rmax

�
β

2 − 2(κ11 + κ33)β2 − 2Λβ
�
.

Combining Wτ+ζ −Wτ and Wτ+ζ+γ −Wτ+ζ , we have:

Wτ+ζ+γ −Wτ ≤ 2rmaxβ
2 [ζ − 4(κ11 + κ33) + 2]

+2Λβ

�
rmax

κ11 + κ33
− 4rmax − 2

�

−2ζHτ+ζ−1 −
4Λ2

κ11 + κ33
. (26)

The key thing to note about Equation 26 is that the first
two terms are factors of β

2 and β, respectively, and, by
applying Lemma 4, the last two terms are negative semi-
definite. Therefore, each time the controller switches from
Na = 0 to Na = 1, W decreases until Hτ+ζ−1 reaches
a threshold around the origin no larger than the first two
terms in Equation 26. Recall that p does not equal q and s

does not equal a or b unless the two contacts are concurrent.
However, since a concurrent configuration is prohibited by the
assumption that execution does not begin with the contacts on
the same face, H approaches zero only when p, q, s, a, and b

approach zero. Since the first and second terms of Equation 26
can be made arbitrarily small by decreasing β, we can force
the switching controller to converge to a configuration with
p, q, s, a, and b arbitrarily close to zero. Since p, q, and s

are zero only when r1 is orthogonal to the surface tangents
at the contacts, we conclude that the system converges to a
threshold around unit frictionless moment equilibrium that can
be lowered by reducing β.

VII. EXPERIMENTS

The three controllers proposed in this paper were compared
with each other in simulation. The approximate null space
grasp controller was also tested in practice using Dexter,
a bimanual dexterous humanoid robot at the University of
Massachusetts Amherst.

A. Experiment 1: Simulation
The simulations explored grasping a spatial ellipsoid with

principle axis lengths 1, 2, and 3 using two contacts. In
order to focus the experiment on the relative performance of
the controllers in the absence of the effects of manipulator
kinematics or control, the two contacts were modeled as free-
floating points constrained to the surface of the ellipsoid. The
switching controller executed with a force threshold parameter
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Fig. 5. Simulation results. The first two panels show unit frictionless force residual (a) and moment residual (b) as a function of controller iteration for a
representative simulation of the three controllers. The solid line is the exact null space controller, the dotted line is the approximate null space controller, and
the dashed line is the switching controller. The last panel (c) illustrates the performance of the switching controller for different values of β. The dashed line
is β = 0.5, the dotted line is β = 0.1, and the solid line is β = 0.01.

of β = 0.1. The approximate null space controller evaluated
the null space projection matrix, N (Ĵf ) = I − Ĵ

+
f Ĵf (a+

denotes the damped-least-squares inverse [40] of a), with a
damping parameter of 0.01. In the simulations, there is no
direct correspondence between step size and time. In general,
the control law can be executed as fast as the mechanism for
contact displacement and contact sensing allows.

The simulation was executed 100 times with the contacts
initialized in randomly selected locations on the ellipsoid.
All three controllers converged to a neighborhood around
unit frictionless equilibrium in all cases. Figure 5(a) and (b)
illustrate representative force and moment residual trajectories
for the three controllers. Figure 5(c) compares the performance
of the switching controller for three different values of β

starting from the same initial contact configuration.

The results are consistent with what might intuitively be
expected. All three controllers have essentially the same per-
formance with respect to the unit frictionless force residual.
This reflects the fact that before converging to a neighborhood
around unit frictionless force equilibrium, all controllers fol-
low essentially the same force residual control gradient. The
three controllers differ in their unit frictionless moment resid-
ual performance. The exact controller converges the fastest,
the approximate controller converges next fastest, and the
switching controller converges slowest. We found that it was
possible to change the relative performance of the approximate
controller and the switching controller by adjusting the damp-
ing parameter and the β parameter, respectively. Although
Figure 5(c) indicates that the switching controller works for
the ellipsoid with high values for β, this is likely not to be
true for arbitrary objects. Also, note that Figure 5(c) indicates
apparently equal convergence of the controller to zero for all
values of β. This suggests that the convergence bound derived
at the end of the proof of Theorem 3 describes the worst-case
behavior of the controller. We hypothesize that the switching
controller will out-perform this bound for many objects.

(a) (b) (c)

Fig. 6. Three objects for which the grasp controller was tested.

B. Experiment 2: Dexter grasping a towel roll
This experiment was performed using Dexter, a bimanual

dexterous humanoid robot at the University of Massachusetts
Amherst. Dexter consists of two whole arm manipulators
(WAMs), two Barrett hands equipped with six-axis load cells
at the fingertips, and a Bisight stereo camera system. Contact
displacements were realized by a hybrid force-position con-
troller that applied a small inward force at each contact while
displacing the contacts tangent to the surface. The contacts
tracked the velocities specified by the grasp controller as
closely as the manipulator kinematic constraints allowed.

The approximate null space grasp controller synthesized 58
two-contact grasps of the vertical towel roll (10cm diameter
and 20cm tall) shown in Figure 6(a). On each trial, the grasp
controller began execution in a randomly selected configu-
ration relative to the object and continued until controller
convergence or until the human operator detected that the ma-
nipulator had collided with the environment. Two of the three
fingers on the Barrett hand were grouped together as a single
contact (a virtual finger) [41], [42]. In this experiment and in
experiment 3, computational time was negligible relative to
the speed of arm motion.

Figures 7(a) and 7(b) show the density of hand orienta-
tions before and after executing the grasp controller. Hand
orientation is measured by the angle between the line that
connects the two virtual contacts and the towel roll major
axis. The Figures show that for the vertical towel roll, the
two-contact grasp controller aligned the hand orthogonal to
the major axis of the cylinder on most of the grasp trials.
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Fig. 7. Experiment 2 (towel roll, two contacts): the distribution of contact
orientations before, (a), and after, (b), the grasp controller has executed.
Orientation is the angle between a line that passes between the two grasp
contacts and the major axis of the object (see text).
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Fig. 8. Experiment 2 (towel roll, two contacts): average squared force
residual, (a), and average squared moment residual, (b), for the grasp trials
that terminated near the peak at π/2 in Figure 7(b). The horizontal axis is in
milliseconds.

However, on a few trials, the controller terminated near the
small peak at 0.45 radians in Figure 7(b). These trials were
terminated by the human operator because the Barrett hand
palm collided with the object. These collisions highlight the
fact that, without any provision for obstacle avoidance or
configuration optimization, limitations on contact mobility
may interfere with grasp controller performance. On these
grasp trials, one of the grasp contacts was on the top of
the cylinder while the other was on the side. As the grasp
controller displaced the contacts around the object, it did not
take the limited aperture of the Barrett hand into account and
caused a collision.

Figure 8 illustrates the average force and moment residual
error trajectories for the grasp trials that comprise the peak
near π/2 in Figure 7(b). Notice that the moment resid-
ual error begins to converge only after convergence of the
force residual controller is complete. This is consistent with
the proofs of Theorems 2 and 3 that suggest that moment
residual convergence depends on force residual convergence.
Figure 8(a) shows the average force error (squared force
residual) while Figure 8(b) shows the average moment error.
The horizontal axis in both figures is grasp controller step.
The graphs illustrate that, on average, both force and moment
errors converge to configurations with small wrench residuals
in approximately 1000 steps (20 seconds, not including the
time taken to tare the fingertip load cells.)
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(b)

Fig. 9. Experiment 3 (squirt bottle, two contacts): average force residual,
(a), and moment residual, (b). The horizontal axis is in milliseconds.
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(b)

Fig. 10. Experiment 3 (detergent bottle, two contacts): average force residual,
(a), and moment residual, (b). The horizontal axis is in milliseconds.

C. Experiment 3: Grasping a Squirt Bottle and a Detergent
Bottle

In the third experiment, the approximate null space grasp
controller was executed for the squirt bottle and detergent
bottle shown in Figures 6(b) and 6(c). The experimental
procedure was the same as that used in experiments 2. On
each trial, the grasp controller started from a randomly selected
configuration. 28 grasp synthesis trials were executed for the
squirt bottle and 31 grasps for the detergent bottle. Whereas
the grasp controller had problems with kinematic limitations
of the manipulator when grasping the cylinder, there were no
such problems with the squirt and detergent bottles because,
for these objects, the grasp controller tended away from grasp
configurations that caused the manipulator to collide with the
table. Figures 9 and 10 show that the grasp controller found
low-error grasps for these objects. These results demonstrate
that although the controllers are theoretically correct only for
convex objects, they perform well for arbitrary objects in
practice.

VIII. CONCLUSION

Rather than planning contact positions based on global
geometric information, grasp control uses local contact mea-
surements to synthesize grasps. An analogy can be drawn
between the use of manipulator compliance in insertion tasks
and grasp control in grasping tasks. In both cases, a control
law using local force feedback is used to adjust what might
initially be only an approximate solution. Both methods can



12

make the fine adjustments in manipulator configuration that
are extremely difficult to achieve in other ways.

This paper focuses on a theoretical understanding of null
space grasp control. Three different variants on the controller
are proposed: exact null space grasp control, approximate null
space grasp control, and switching grasp control. Exact control
and switched control are theoretically demonstrated to con-
verge to unit frictionless equilibrium contact configurations.
Nevertheless, all three controllers are found to converge in
simulation from arbitrary initial contact configurations. The
approximate null space controller has been tested extensively
using Dexter, a bimanual dexterous humanoid robot at the
University of Massachusetts Amherst, and found to work well.

From a theoretical perspective, an important remaining
question is whether convergence can be established for the
approximate null space controller of Equation 21. Our ex-
perimental results suggest that this controller works well.
However, the controller has not yet been shown to converge
for all convex objects. From a broader perspective, there are
many ways that force information might be used to assist
robot grasping. Intuition suggests that humans rely on a sense
of touch to grasp without looking at the object and to make
grasping more robust. We expect that this will continue to be
an important research question in the future.

APPENDIX

The following Lemma was used in Section III-B and is
proven below.

Lemma 1: When the contacts can apply frictional torsional
loads about the contact normal as well as tangential frictional
forces, then a sufficient condition for three-dimensional two-
finger force closure is non-marginal equilibrium.

Proof: Let f1 and f2 be equilibrium forces on the object.
Let a1 and a2 be equilibrium contact moments (induced by
the soft contacts) about the surface normals. Let r1 and r2 be
the contact positions in a coordinate frame centered outside
the object. Let f and m be the components of an arbitrary
wrench applied to the object. Let β be the component of m
orthogonal to r1 − r2. Let α be the other component.

Since the system is in equilibrium, we have that f1 + f2 = 0
and r1 × f1 + r2 × f2 + a1 + a2 = 0. Let f �1 = f1 − f + v,
f �2 = f2 − v, a

�
1 = a1 − α, and a

�
2 = a2 where

v = (x1 × f − β)× (x1 − x2).

Then, we have that f �1 + f �2 = −f and a
�
1 + a

�
2 + r1 × f �1 +

r2 × f �2 = −m. Therefore, it is possible to resist an arbitrary
wrench, f and m, as long as f �1, f �2, a

�
1, and a

�
2 are within their

friction cones. Following the argument in [33], for any force
difference c, it is possible to apply the net force, f �1 = γf1 +c
by increasing γ sufficiently. Similarly, arbitrary moments about
the contact normal can be applied.

The following three lemmas are used in Section VI.

Lemma 2: Let (u1,v1,n1) and (u2,v2,n2) be two or-
thonormal right-handed coordinate frames such that v1 = v2.
Then nT

1 u2 = −nT
2 u1.

Proof:
Let R be a rotation matrix that describes the relationship

between the two coordinate frames:

(u2,v2,n2) = R(u1,v1,n1).

Let Φ describe a 90 degree rotation about v1 = v2 such that:

n1 = Φu1,

and
n2 = Φu2.

Then:

nT
1 u2 = nT

1 Ru1

= (Φu1)T
RΦT n1

= uT
1 ΦT

RΦT n1.

Since both Φ and R rotate about v1 = v2, these rotation
matrices commute:

ΦT
RΦT = RΦT ΦT

.

However, notice that since ΦT rotates through 90 degrees,
ΦT ΦT rotates through 180 degrees, or:

nT
1 u2 = uT

1 ΦT
RΦT n1

= uT
1 RΦT ΦT n̂1

= −uT
1 Rn1

= −uT
1 n2.

Lemma 3: Let (u1,v1,n1) and (u2,v2,n2) be two or-
thonormal right-handed coordinate frames such that v1 = v2

and nT
1 n2 ≤ 0. Then

�nT
2 u1� ≤ �f� ≤

√
2�nT

2 u1�,

where f = n1 + n2.

Proof: Let β be the magnitude of the angle between n1

and n2. Since nT
1 n2 ≤ 0, then β must be bounded by: 90 ≤

β ≤ 180.

90−β
1

n1

n2

u2

β
u

Fig. 11. Geometry of β.

Since v1 = v2, then n1, n2, u1, and u2 lie in a plane.
By the geometry of the situation, the magnitude of the angle
between n2 and u1 is β − 90 (see Figure 11). Therefore:

�nT
2 u1� = cos(β − 90)

= � sin β�

= 2� sin
β

2
cos

β

2
�.
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Let h be the unit vector such that:

n1 + n2 = �f�h,

and �f� = �n1 + n2�. Then

�f� = �hT n1�+ �hT n2�.

Let γ be the angle between h and n1 such that

cos
β

2
= cos γ

= �hT n1�
= �hT n2�

=
�f�
2

.

Since sin β
2 ≤ 1, we have that:

�nT
2 u1� = �2 sin

β

2
cos

β

2
�

≤ 2� cos
β

2
�

≤ �f�.

Also, since β ≥ 90 by assumption, then sin β
2 ≥

1√
2

and we
have:

�n̂T
2 u1� = �2 sin

β

2
cos

β

2
�

≥
√

2�cosβ

2
�

≥ 1√
2
�f�.

Combining the above bounds on �f�, we have:

�n̂T
2 u1� ≤ �f� ≤

√
2�n̂T

2 u1�.

Lemma 4: Let (u1,v1,n1) and (u2,v2,n2) be two coordi-
nate frames such that v1 = v2 and nT

1 n2 ≤ 0. Let s = rT v1,
a = rT (n2×u1), and b = rT (n1×u2) for an arbitrary vector,
r. Then s = 0 implies that a = 0 and b = 0. Also, sa ≤ 0
and sb ≤ 0.

Proof: Since v1 = v2, we have that u1 ,n1, u2, and n2

are orthogonal to v1. Therefore, n2×u1 = γv1 and n1×u2 =
ηv1 where γ = (n2 × u1)T v1 and η = (n1 × u2)T v1. a and
b can be rewritten: a = γs and a = ηs. Therefore, we have
that s = 0 implies that a = 0 and b = 0.

Note that γ and η must be negative:

γ = (n2 × u1)T v1

= nT
2 (u1 × v1)

= nT
2 n1

≤ 0,

and

η = (n1 × u2)T v1

= nT
1 (u2 × v2)

= nT
1 n2

≤ 0.

We can conclude that sa and sb are negative because:

sa = rT v1rT (n2 × u1)
= γrT v1vT

1 r
≤ 0,

and

sb = rT v1rT (n1 × u2)
= ηrT v1vT

1 r
≤ 0.

Lemma 5: Let (u1,v1,n1) and (u2,v2,n2) be two orthog-
onal coordinate frames such that v1 = v2. Then |rT u1 +
rT u2| ≤ �r��n1 + n2�.

Proof: Notice that n1 and u1 are related by the same
rotation matrix that relates n2 and u2: n1 = Ru1 and n2 =
Ru2. Therefore:

�u1 + u2� = �RT n1 + R
T n�

= �n1 + n2�

and
�rT u1 + rT u2� ≤ �r1��n1 + n2� (27)

where the last inequality used Lemma 3.
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