
Practical Stuff: Roger MotorUnits.c
Master Control Procedure

the simulator runs your control roger() procedure inside
“Project #1 - Basic Motor Units” every millisecond

/* == the simulator executes control_roger() once ==*/

/* == every simulated 0.001 second (1000 Hz) ==*/

control_roger(roger, time)

Robot * roger;

double time;

{

update_setpoints(roger);

// turn setpoint references into torques

PDController_base(roger, time);

PDController_arms(roger, time);

PDController_eyes(roger, time);

}
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Roger MotorUnits.c
PDController eyes()

double Kp_eye, Kd_eye;

// gain values set in enter_params()

/* Eyes PD controller:

/* -pi/2 < eyes_setpoint < pi/2 for each eye */

PDController_eyes(roger, time)

Robot * roger;

double time;

{

int i;

double theta_error;

for (i = 0; i < NEYES; i++) {

theta_error = roger->eyes_setpoint[i]

- roger->eye_theta[i];

// roger->eye_torque[i] = ...

}

}
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Roger MotorUnits.c
PDcontroller arms()

double Kp_arm, Kd_arm;

// gain values set in enter_params()

/* Arms PD controller: -pi < arm_setpoint < pi */

/* for the shoulder and elbow of each arm */

PDController_arms(roger, time)

Robot * roger;

double time;

{

int i;

double theta_error;

for (i = LEFT; i <= RIGHT; ++i) {

theta_error = roger->arm_setpoint[i][0]

- roger->arm_theta[i][0];

// -M_PI < theta_error < +M_PI

// roger->arm_torque[i][0] = ...

// roger->arm_torque[i][1] = ...

}

}
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Basic Tools of Linear Control Theory

Outline

• Negative Feedback
• Open- and Closed-Loop Control

• The Canonical Spring-Mass-Damper - Lya-
punov Stability

• Laplace Transform
• the Characteristic Equation
• Equilibrium Setpoint Control - A Robot
Controller
class exercise - Roger’s eye and PD control

• Closed-Loop Transfer Function

• Frequency-Domain Response
class exercise - Roger’s eye frequency-domain
response
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Motor Circuits
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• α-motor neurons initiate motion—they’re fast

• each will innervate an average of 200 muscle fibers.

• relatively slow γ-motor neuron regulates muscle tone by setting
the reference length of the spindle receptor.

• Golgi tendon organ measures the tension in the tendon and
inhibits the α-motor neuron if it exceeds safe levels
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Negative Feedback
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• If (spindle length > reference), the α-motor neuron cause a
contraction of the muscle tissue

• if (spindle length< reference), the α-motor neuron is inhibited,
allowing the muscle to extend

Negative Feedback

...the α-motor neuron changes its output so as to cancel some

of its input...

6 Copyright c©2020 Roderic Grupen



Negative Feedback

• first submitted for a patent in 1928 by Harold S. Black

• it explained the operating principle of many devices including
Watt’s governor that pre-dated it by some 40 years.

• catalyzed the field of cybernetics

• now heralded as the fundamental principle of stability in com-
pensated dynamical systems

The Muscle Stretch Reflex
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Open- and Closed-Loop Control

open-loop -
a trigger event causes a response without further stimulation

withdrawl reflex
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closed-loop -
a (time-varying) setpoint is achieved by constantly measuring and
correcting in order to actively reject disturbances

Norbert Weiner - cybernetics (helmsman), homeostasis, endocrine
system
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The Spring-Mass-Damper

Fk = −Kx Fb = −Bv = −Bẋ

∑

F = mẍ = f (t)− Bẋ−Kx

mẍ + Bẋ +Kx = f (t), or

ẍ + (B/m)ẋ + (K/m)x = f (t)/m =
∼

f (t) or

ẍ + 2ζωnẋ + ω2
nx =

∼
f (t) harmonic oscillator

= 0 characteristic equation

where:

ωn = (K/m)1/2 [rad/sec] - natural frequency

ζ = B/2(Km)1/2 0 ≤ ζ ≤ ∞ - damping ratio

x′(t) = x(t)− xref accounts for arbitrary reference positions
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Analytic Stability —
Lyapunov’s Second/Direct Method

Stability - the origin of the state space is stable if there exists
a region, S(r), such that states which start within S(r) remain
within S(r).

Asymptotic Stability - a system is asymptotically stable in
S(r) if as t → ∞, the system state approaches the origin of the
state space.

x

x

x

x

S(r)
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Analytic Stability -
Lyapunov’s Second/Direct Method

Define: an arbitrary scalar function, V (x, t), called a Lyapunov

function, continuous is all first derivatives, where x is the state
and t is time,

Iff: If the function, V (x, t), exists such that:

(a) V (0, t) = 0, and
(b) V (x, t) > 0, for x 6= 0 (positive definite), and
(c) ∂V/∂t < 0 (negative definite),

Then: the system described by V is asymptotically stable in the
neighborhood of the origin.

...if a system is stable, then there exists a suitable Lyapunov

function.

...if, however, a particular Lyapunov function does not satisfy

these criteria, it is not necessarily true that this system is

unstable.
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EXAMPLE: spring-mass-damper

system dynamics:

ẍ +
B

m
ẋ +

K

m
x = 0

E =

∫ v

0

(mv)dv +

∫ x

0

(Kx)dx

=
1

2
mv2 +

1

2
Kx2

=
1

2
mẋ2 +

1

2
Kx2

Lyapunov function:

V (x, t) = E =
mẋ2

2
+
Kx2

2

(a) V (0, t) = 0,
√

(b) V (x, t) > 0,
√

(c) ∂V/∂t negative definite?
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EXAMPLE: spring-mass-damper

Lyapunov function:

V (x, t) = E =
mẋ2

2
+
Kx2

2

dE

dt
= mẋẍ +Kxẋ

dE

dt
= mẋ [−(B/m)ẋ− (K/m)x] +Kxẋ

dE

dt
= −Bẋ2

stable? or not stable?
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EXAMPLE: spring-mass-damper
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...the entire state space is asymptotically stable for B > 0.
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Recap: Introduction to Control

So far, we have:

• introduced the concept of negative feedback in robotics and
biology;

• proposed the spring-mass-damper (SMD) as a prototype for
proportional-derivative (PD) control;

• we derived the dynamics for the SMD using Newton’s laws and
a free body diagram; and

• we introduced Lypunov’s Direct Method to show the the SMD
(and thus PD control) is asymptotically stable.

Now: we describe more tools for analyzing closed-loop linear con-
trollers — the Laplace transform and transfer functions
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Tools: Complex Numbers

Cartesian form: s = σ + jω

• σ = Re(s) is the real part of s

• ω = Im(s) is the imaginary part of s

• j =
√
−1 (sometimes I may use i)

Polar form: s = rejφ

• r =
√
σ2 + ω2 is the modulus or magnitude of s

• φ = atan(ω/σ) is the angle or phase of s

• Euler’s formula: ejφ = cos(φ) + jsin(φ)

complex exponential of s = σ + jω:

est = e(σ+jω)t = eσtejωt = eσt [cos(ωt) + jsin(ωt)]
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Laplace Transform

F (s) = L[f (t)] =
∫ ∞

0

f (t)e−stdt where s = σ + jω

• F (s) is a complex-valued function of complex numbers

• s is called the complex frequency variable in units of [ 1
sec]; t is

time in [sec]; st is unitless

The Laplace integral will converge if:

• f (t) is piecewise continuous,
• f (t) is of exponential order — i.e., there exists an a such that
|f (t)| ≤Meat for all t > T where T is some finite time.
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Example: Laplace transform of f (t) = et

F (s) =

∫ ∞

0

ete−stdt =

∫ ∞

0

e(1−s)tdt =
1

1− s
e(1−s)t

∣

∣

∣

∣

∞

0

if we assume that Re(s) > 1 so that e(1−s)t → 0 as t→∞, then

F (s) =
1

1− s

[

e(1−s)∞ − e(1−s)0
]

=
1

s− 1

therefore,

L[et] = 1

s− 1
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Example: Laplace transform of “unit step”

unit step: u(t) = 1 (for t ≥ 0)

F (s) =

∫ ∞

0

e−stdt = −1
s
e−st

∣

∣

∣

∣

∞

0

=
1

s

therefore,

L[u(t)] = 1

s

...fortunately, a lot of these examples have already been worked
out by other people and published in tables...
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Laplace Transform Pairs

Name f (t) F (s)

unit impulse δ(t) 1

unit step u(t) 1
s

ramp t 1
s2

nth-order ramp tn n!
sn+1

exponential e−at 1
s+a

ramped exponential 1
(n−1)!t

n−1e−at 1
(s+a)n

sine sin at a
s2+a2

cosine cos at s
s2+a2

damped sine e−atsinωt ω
(s+a)2+ω2

damped cosine e−atsinωt s+a
(s+a)2+ω2

hyperbolic sine sinh at a
s2−a2

hyperbolic cosine cosh at s
s2−a2
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Laplace Transform

...so what does this do for us?

if we assume that the robot movements are functions of time f (t),
such that

f (t) ∼ est

then, from calculus:

d

dt
[f (t)] = ḟ (t) ∼ sest

∫

f (t)dt ∼ 1

s
est

let’s say this a different way (ignoring some details about boundary
conditions for now), if L [f (t)] = F (s), then

L
[

df

dt

]

= sF (s) , and

L
[
∫

f (t)dt

]

=
1

s
F (s)
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Laplace Transform
Differential Equations

for example, ḟ + af = 0

i.e. the “slope” of function f (df/dt) is proportional to the value
of the function, df/dt = −af

assuming f (t) ∼ est:

sF (s) + aF (s) = 0

(s + a)F (s) = 0

and the first-order differential equation is transformed into
polynomial (s + a),

root (s = −a) tells us more about function f (t),

f (t) ∼ Ae−at

where A is a constant that depends on boundary conditions, we
will look at that in subsequent examples.
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Implications for
the Harmonic Oscillator

ẍ + 2ζωnẋ + ω2
nθ =

∼
fd (t)

L(·)
−→

←−
L−1(·)

[

s2 + 2ζωns + ω2
n

]

X(s) =
∼
Fd (s)

the homogeneous (unforced) form (i.e. when
∼
fd= 0)

yields the characteristic equation of the 2nd-order oscillator

s2 + 2ζωns + ω2
n = 0
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Roots of the Characteristic Equation

s2 + 2ζωns + ω2
n = 0

roots ⇒ values of s in Aest that satisfy the original differential
equation

ẍ + 2ζωnẋ + ω2
nx = 0

s1,2 =
−2ζωn ±

√

(2ζωn)2 − 4ω2
n

2
=

2ωn[−ζ ±
√

ζ2 − 1]

2

= −ζωn ± ωn

√

ζ2 − 1,

three cases: • repeated real roots (ζ = 1)

• distinct real roots (ζ > 1)

• complex conjugates roots (ζ < 1)
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Roots of the Characteristic Equation

For two distinct roots

x(t) = A0 + A1e
s1t + A2e

s2t

the solution in t ∈ [0,∞) requires three boundary conditions to
solve for three unknowns A0, A1, and A2

x(0) = x0 = A0 + A1 + A2

ẋ(0) = ẋ0 = s1A1 + s2A2,

x(∞) = x∞ = A0

so, a complete time-domain solution is determined

x(t) = x∞ +
(x0 − x∞)s2 − ẋ0

s2 − s1
es1t +

(x0 − x∞)s1 − ẋ0
s1 − s2

es2t
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Roots of the Characteristic Equation

given boundary conditions x0 = ẋ0 = 0 and x∞ = 1.0 the solution
simplifies to

x(t) = 1.0− s2
s2 − s1

es1t − s1
s1 − s2

es2t

ζ = 0
0.1

0.2

0.4

0.7
1.0

2.0

x [m]

time [sec]

(K = 1.0 [N/m], M = 2.0 [kg])
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Closed-Loop Control
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Σ
Σ
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_+
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O
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O
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A Robot Controller

m

l

x

τ

O

d

m

BK

O O
y

Σ
−−

τ ( )t
the controller samples θ and θ̇
and drives the motor to emulate
the analog spring and damper

τm = −Bθ̇ −Kθ

∑

τ = Iθ̈ = τd + τm = τd − Bθ̇ −Kθ, so that

Iθ̈ + Bθ̇ +Kθ = τd

θ̈ + 2ζωnθ̇ + ω2
nθ =

∼
τd

where, in this case,

ζ =
B

2
√
KI

, and ωn =
√

K/I
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Class Exercise
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Transfer Functions

G
1

G
2

OUT(s)IN(s) IN(s) OUT(s)G G
21

Σ OUT(s)

G
1

G
2

IN(s) IN(s) OUT(s)
2

G +G
1

G
e

OUT(s)IN(s)
IN(s) OUT(s)

G
1+GH

Σ

H

+ _

IN(s)−OUT (s)H(s) = e(s) =
OUT (s)

G(s)

IN(s) = OUT (s)

[

1

G(s)
+H(s)

]

= OUT (s)

[

1 +G(s)H(s)

G(s)

]

OUT (s)

IN(s)
=

G(s)

1 +G(s)H(s)
closed-loop transfer function
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Spring-Mass-Damper
Closed-Loop Transfer Function

∼
f (t) = ẍ + 2ζωnẋ + ω2

nx
∼

F (s) =
(

s2 + 2ζωns + ω2
n

)

X(s),

so that, we can write it in the form of a
closed-loop transfer function

X(s)
∼

F (s)
= 1

s2+2ζωns+ω2n

∼
F in(s)→ 1

s2+2ζωns+ω2n
→ Xout(s)
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...with a change of variable, we can re-write this transfer function
to accept a position reference input...
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Spring-Mass-Damper
Equilibrium Setpoint Control

...note that if we apply a constant force
∼

F (s) to the mass, the
system will settle into a steady state deflection Xref(s)...

∼
F (s)= constant = KXref(s)

therefore,

KXref(s) =
(

Ms2 + Bs +K
)

Xact(s), and,

Xact(s)

Xref(s)
=

K

Ms2 + Bs +K
=

ω2n
s2+2ζωns+ω2n

Xref(s)→
ω2n

s2+2ζωns+ω2n
→ Xact(s)
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Solving with the
Laplace Transform Tables

The Time Domain Response

...at t = 0, apply a unit step reference input

xref(t) = 1

Xref(s) =
1

s

Therefore, if we let ωn = 1 and ζ = 1

Xact(s) =

[

1

s2 + 2s + 1

] [

1

s

]

=
1

s(s + 1)2

partial-fraction expansion of this quotient yields:

Xact(s) =
1

s(s + 1)2
=

a

s
+

b

(s + 1)
+

c

(s + 1)2

=
1

s
+
−1

(s + 1)
+
−1

(s + 1)2

The inverse Laplace transform (from the tables)

xact(t) = 1− e−t − te−t

so that at t = 0, xact(t) = 0, but as t→∞, the robot converges
to the reference position.
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Frequency-Domain Response

to get some insight into how different input frequencies influence
the output response, consider a sinusoidal input with frequency ω.

xref(t) = A cosωt R(s) =
As

s2 + ω2
=

As

(s− iω)(s + iω)

and the partial fraction expansion incorporates two more terms

C(s) = Ccltf(s) +
k1

s− iω
+

k2
s + iω

.

whose roots s = ±iω are purely imaginary and the inverse Laplace
transform of these terms yields time domain responses like:

k1e
iωt and, k2e

−iωt

...the steady state response of the second order system in
response to a sinusoidal input is also a contact amplitude

sinusoid of the same frequency...
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Frequency-Domain Response -
continued

the magnitude of the sinusoidal response will be proportional to
the amplitude of the forcing function, A, and the gain expressed
in the closed-loop transfer function,

G(s)

1 +G(s)H(s)
=

ω2
n

s2 + 2ζωns + ω2
n

=
1

(s/ωn)2 + 2ζ(s/ωn) + 1

The gain from the CLTF can be determined by evaluating the
CLTF at the roots introduced by the forcing function (s = ±iω).
The result is a complex number with corresponding magnitude
and phase:

∣

∣

∣

∣

G(s)

1 +G(s)H(s)

∣

∣

∣

∣

s=iω

=
1

[(1− (ω/ωn)2)2 + (2ζ(ω/ωn))2]
1/2

φ(ω) = −tan−1
(

2ζ(ω/ωn)

1− (ω/ωn)2

)
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Frequency-Domain Response

ζ = 0.1

0.2

0.4

1.0

2.0

(a)

|Ccltf(s)|s=iω

bandwidth:

power ratio = 1/2

response = 1/
√
2

ω
ωn

ζ = 0.1 0.2 0.4
1.0
2.0

(b)

|φcltf |s=iω

ω
ωn

37 Copyright c©2020 Roderic Grupen



Class Exercise
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