Practical Stuff: Roger MotorUnits.c Master Control Procedure

the simulator runs your control_roger() procedure inside "Project \#1 - Basic Motor Units" every millisecond

```
/* == the simulator executes control_roger() once ==*/
/* == every simulated 0.001 second (1000 Hz) ==*/
control_roger(roger, time)
Robot * roger;
double time;
{
    update_setpoints(roger);
    // turn setpoint references into torques
    PDController_base(roger, time);
    PDController_arms(roger, time);
    PDController_eyes(roger, time);
}
```


Roger MotorUnits.c PDController eyes()

```
double Kp_eye, Kd_eye;
// gain values set in enter_params()
/* Eyes PD controller:
/* -pi/2 < eyes_setpoint < pi/2 for each eye */
PDController_eyes(roger, time)
Robot * roger;
double time;
{
    int i;
    double theta_error;
    for (i = 0; i < NEYES; i++) {
        theta_error = roger->eyes_setpoint[i]
                        - roger->eye_theta[i];
        // roger->eye_torque[i] = ...
    }
}
```


Roger MotorUnits.c PDcontroller arms()

// gain values set in enter_params()

```
/* Arms PD controller: -pi < arm_setpoint < pi */
/* for the shoulder and elbow of each arm */
PDController_arms(roger, time)
Robot * roger;
double time;
{
    int i;
    double theta_error;
    for (i = LEFT; i <= RIGHT; ++i) {
        theta_error = roger->arm_setpoint[i][0]
                                - roger->arm_theta[i][0];
        // -M_PI < theta_error < +M_PI
        // roger->arm_torque[i][0] = ...
        // roger->arm_torque[i][1] = ...
    }
}
```


Basic Tools of Linear Control Theory

Outline

- Negative Feedback
- Open- and Closed-Loop Control
- The Canonical Spring-Mass-Damper - Lyapunov Stability
- Laplace Transform
- the Characteristic Equation
- Equilibrium Setpoint Control - A Robot Controller class exercise - Roger's eye and PD control
- Closed-Loop Transfer Function
- Frequency-Domain Response class exercise - Roger's eye frequency-domain response
cortex
Motor Circuits brain stem

- α-motor neurons initiate motion-they're fast
- each will innervate an average of 200 muscle fibers.
- relatively slow γ-motor neuron regulates muscle tone by setting the reference length of the spindle receptor.
- Golgi tendon organ measures the tension in the tendon and inhibits the α-motor neuron if it exceeds safe levels

- If (spindle length $>$ reference), the α-motor neuron cause a contraction of the muscle tissue
- if (spindle length $<$ reference), the α-motor neuron is inhibited, allowing the muscle to extend

Negative Feedback

...the α-motor neuron changes its output so as to cancel some of its input...

Negative Feedback

- first submitted for a patent in 1928 by Harold S. Black
- it explained the operating principle of many devices including Watt's governor that pre-dated it by some 40 years.
- catalyzed the field of cybernetics
- now heralded as the fundamental principle of stability in compensated dynamical systems

The Muscle Stretch Reflex

Open- and Closed-Loop Control

open-loop -

a trigger event causes a response without further stimulation

> withdrawl reflex

closed-loop -

a (time-varying) setpoint is achieved by constantly measuring and correcting in order to actively reject disturbances

Norbert Weiner - cybernetics (helmsman), homeostasis, endocrine system

where:

$$
\begin{gathered}
\omega_{n}=(\mathrm{K} / \mathrm{m})^{1 / 2} \quad[\mathrm{rad} / \mathrm{sec}] \text { - natural frequency } \\
\zeta=B / 2(\mathrm{Km})^{1 / 2} \quad 0 \leq \zeta \leq \infty \text { - damping ratio } \\
x^{\prime}(t)=x(t)-x_{\text {ref }} \text { accounts for arbitrary reference positions }
\end{gathered}
$$

Analytic Stability Lyapunov's Second/Direct Method

Stability - the origin of the state space is stable if there exists a region, $S(r)$, such that states which start within $S(r)$ remain within $S(r)$.

Asymptotic Stability - a system is asymptotically stable in $S(r)$ if as $t \rightarrow \infty$, the system state approaches the origin of the state space.

Analytic Stability Lyapunov's Second/Direct Method

Define: an arbitrary scalar function, $V(\mathbf{x}, t)$, called a Lyapunov function, continuous is all first derivatives, where \mathbf{x} is the state and t is time,

Iff: If the function, $V(\mathbf{x}, t)$, exists such that:
(a) $V(0, t)=0$, and
(b) $V(\mathbf{x}, t)>0$, for $x \neq 0$ (positive definite), and
(c) $\partial V / \partial t<0 \quad$ (negative definite),

Then: the system described by V is asymptotically stable in the neighborhood of the origin.
...if a system is stable, then there exists a suitable Lyapunov function.
...if, however, a particular Lyapunov function does not satisfy these criteria, it is not necessarily true that this system is unstable.

EXAMPLE: spring-mass-damper

 system dynamics:

$$
\begin{aligned}
& \ddot{x}+\frac{B}{m} \dot{x}+\frac{K}{m} x=0 \\
E= & \int_{0}^{v}(m v) d v+\int_{0}^{x}(K x) d x \\
= & \frac{1}{2} m v^{2}+\frac{1}{2} K x^{2} \\
= & \frac{1}{2} m \dot{x}^{2}+\frac{1}{2} K x^{2}
\end{aligned}
$$

Lyapunov function:

$$
V(\mathbf{x}, t)=E=\frac{m \dot{x}^{2}}{2}+\frac{K x^{2}}{2}
$$

(a) $V(0, t)=0, \quad \sqrt{ }$
(b) $V(\mathbf{x}, t)>0, \quad \sqrt{ }$
(c) $\partial V / \partial t \quad$ negative definite?

$$
\frac{d E}{d t}=m \dot{x}[-(B / m) \dot{x}-(K / m) x]+K x \dot{x}
$$

$$
\frac{d E}{d t}=-B \dot{x}^{2}
$$

stable? or not stable?

EXAMPLE: spring-mass-damper

...the entire state space is asymptotically stable for $B>0$.

Recap: Introduction to Control

So far, we have:

- introduced the concept of negative feedback in robotics and biology;
- proposed the spring-mass-damper (SMD) as a prototype for proportional-derivative (PD) control;
- we derived the dynamics for the SMD using Newton's laws and a free body diagram; and
- we introduced Lypunov's Direct Method to show the the SMD (and thus PD control) is asymptotically stable.

Now: we describe more tools for analyzing closed-loop linear controllers - the Laplace transform and transfer functions

Tools: Complex Numbers

Cartesian form: $s=\sigma+j \omega$

- $\sigma=\operatorname{Re}(s)$ is the real part of s
- $\omega=\operatorname{Im}(s)$ is the imaginary part of s
- $j=\sqrt{-1}$ (sometimes I may use i)

$$
\text { Polar form: } s=r e^{j \phi}
$$

- $r=\sqrt{\sigma^{2}+\omega^{2}}$ is the modulus or magnitude of s
- $\phi=\operatorname{atan}(\omega / \sigma)$ is the angle or phase of s
- Euler's formula: $e^{j \phi}=\cos (\phi)+j \sin (\phi)$
complex exponential of $s=\sigma+j \omega$:

$$
e^{s t}=e^{(\sigma+j \omega) t}=e^{\sigma t} e^{j \omega t}=e^{\sigma t}[\cos (\omega t)+j \sin (\omega t)]
$$

Laplace Transform

$$
F(s)=\mathcal{L}[f(t)]=\int_{0}^{\infty} f(t) e^{-s t} d t \quad \text { where } s=\sigma+j \omega
$$

- $F(s)$ is a complex-valued function of complex numbers
- s is called the complex frequency variable in units of $\left[\frac{1}{s e c}\right] ; t$ is time in $[\mathrm{sec}]$; st is unitless

The Laplace integral will converge if:

- $f(t)$ is piecewise continuous,
- $f(t)$ is of exponential order - i.e., there exists an a such that $|f(t)| \leq M e^{a t}$ for all $t>T$ where T is some finite time.

Example: Laplace transform of $f(t)=e^{t}$

$$
F(s)=\int_{0}^{\infty} e^{t} e^{-s t} d t=\int_{0}^{\infty} e^{(1-s) t} d t=\left.\frac{1}{1-s} e^{(1-s) t}\right|_{0} ^{\infty}
$$

if we assume that $\operatorname{Re}(s)>1$ so that $e^{(1-s) t} \rightarrow 0$ as $t \rightarrow \infty$, then

$$
F(s)=\frac{1}{1-s}\left[e^{(1-s) \infty}-e^{(1-s) 0}\right]=\frac{1}{s-1}
$$

therefore,

$$
\mathcal{L}\left[e^{t}\right]=\frac{1}{s-1}
$$

unit step: $u(t)=1($ for $t \geq 0)$

$$
F(s)=\int_{0}^{\infty} e^{-s t} d t=-\left.\frac{1}{s} e^{-s t}\right|_{0} ^{\infty}=\frac{1}{s}
$$

therefore,

$$
\mathcal{L}[u(t)]=\frac{1}{s}
$$

...fortunately, a lot of these examples have already been worked out by other people and published in tables...

Laplace Transform Pairs

Name	$f(t)$	$F(s)$
unit impulse	$\delta(t)$	1
unit step	$u(t)$	$\frac{1}{s}$
ramp	t	$\frac{1}{s^{2}}$
$n^{t h}$-order ramp	t^{n}	$\frac{n!}{s^{n+1}}$
exponential	$e^{-a t}$	$\frac{1}{s+a}$
ramped exponential	$\frac{1}{(n-1)!} t^{n-1} e^{-a t}$	$\frac{1}{(s+a)^{n}}$
sine	$\sin a t$	$\frac{a}{s^{2}+a^{2}}$
cosine	$e^{-a t} \sin \omega t$	$\frac{s}{s^{2}+a^{2}}$
damped sine $a t$	$\frac{\omega}{(s+a)^{2}+\omega^{2}}$	
damped cosine	$e^{-a t} \sin \omega t$	$\frac{s+a}{(s+a)^{2}+\omega^{2}}$
hyperbolic sine	$\sinh a t$	$\frac{a}{s^{2}-a^{2}}$
hyperbolic cosine	$\cosh a t$	$\frac{s}{s^{2}-a^{2}}$

Laplace Transform

...so what does this do for us?

if we assume that the robot movements are functions of time $f(t)$, such that

$$
f(t) \sim e^{s t}
$$

then, from calculus:

$$
\begin{aligned}
\frac{d}{d t}[f(t)]=\dot{f}(t) & \sim s e^{s t} \\
\int f(t) d t & \sim \frac{1}{s} e^{s t}
\end{aligned}
$$

let's say this a different way (ignoring some details about boundary conditions for now), if $\mathcal{L}[f(t)]=F(s)$, then

$$
\begin{aligned}
\mathcal{L}\left[\frac{d f}{d t}\right] & =s F(s), \text { and } \\
\mathcal{L}\left[\int f(t) d t\right] & =\frac{1}{s} F(s)
\end{aligned}
$$

Laplace Transform
 Differential Equations

for example,

$$
\dot{f}+a f=0
$$

i.e. the "slope" of function $f(d f / d t)$ is proportional to the value of the function, $d f / d t=-a f$
assuming $f(t) \sim e^{s t}$.

$$
\begin{aligned}
s F(s)+a F(s) & =0 \\
(s+a) F(s) & =0
\end{aligned}
$$

and the first-order differential equation is transformed into polynomial $(s+a)$, root $(s=-a)$ tells us more about function $f(t)$,

$$
f(t) \sim A e^{-a t}
$$

where A is a constant that depends on boundary conditions, we will look at that in subsequent examples.

Implications for the Harmonic Oscillator

$\ddot{x}+2 \zeta \omega_{n} \dot{x}+\omega_{n}^{2} \theta=\tilde{f}_{d}(t) \xrightarrow{\stackrel{\mathcal{L}(\cdot)}{\mathcal{L}^{-1}(\cdot)}}\left[s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}\right] X(s)=\tilde{F}_{d}(s)$
the homogeneous (unforced) form (i.e. when $\tilde{f}_{d}=0$)
yields the characteristic equation of the $2^{\text {nd }}$-order oscillator

$$
s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}=0
$$

Roots of the Characteristic Equation

$$
s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}=0
$$

roots \Rightarrow values of s in $A e^{s t}$ that satisfy the original differential equation

$$
\ddot{x}+2 \zeta \omega_{n} \dot{x}+\omega_{n}^{2} x=0
$$

$$
s_{1,2}=\frac{-2 \zeta \omega_{n} \pm \sqrt{\left(2 \zeta \omega_{n}\right)^{2}-4 \omega_{n}^{2}}}{2}=\frac{2 \omega_{n}\left[-\zeta \pm \sqrt{\zeta^{2}-1}\right]}{2}
$$

$$
=-\zeta \omega_{n} \pm \omega_{n} \sqrt{\zeta^{2}-1}
$$

three cases: - repeated real roots $(\zeta=1)$

- distinct real roots $(\zeta>1)$
- complex conjugates roots $(\zeta<1)$

Roots of the Characteristic Equation

For two distinct roots

$$
x(t)=A_{0}+A_{1} e^{s_{1} t}+A_{2} e^{s_{2} t}
$$

the solution in $t \in[0, \infty)$ requires three boundary conditions to solve for three unknowns A_{0}, A_{1}, and A_{2}

$$
\begin{aligned}
x(0)=x_{0} & =A_{0}+A_{1}+A_{2} \\
\dot{x}(0)=\dot{x}_{0} & =s_{1} A_{1}+s_{2} A_{2}, \\
x(\infty)=x_{\infty} & =A_{0}
\end{aligned}
$$

so, a complete time-domain solution is determined

$$
x(t)=x_{\infty}+\frac{\left(x_{0}-x_{\infty}\right) s_{2}-\dot{x}_{0}}{s_{2}-s_{1}} e^{s_{1} t}+\frac{\left(x_{0}-x_{\infty}\right) s_{1}-\dot{x}_{0}}{s_{1}-s_{2}} e^{s_{2} t}
$$

Roots of the Characteristic Equation

given boundary conditions $x_{0}=\dot{x}_{0}=0$ and $x_{\infty}=1.0$ the solution simplifies to

$$
x(t)=1.0-\frac{s_{2}}{s_{2}-s_{1}} e^{s_{1} t}-\frac{s_{1}}{s_{1}-s_{2}} e^{s_{2} t}
$$

$$
(K=1.0[\mathrm{~N} / \mathrm{m}], M=2.0[\mathrm{~kg}])
$$

Closed-Loop Control

sample and hold $\Delta t=\tau$ where $\frac{1}{\tau}[\mathrm{~Hz}]$ is the servo rate

A Robot Controller

the controller samples θ and $\dot{\theta}$ and drives the motor to emulate the analog spring and damper

$$
\tau_{m}=-B \dot{\theta}-K \theta
$$

$$
\sum \tau=I \ddot{\theta}=\tau_{d}+\tau_{m}=\tau_{d}-B \dot{\theta}-K \theta, \quad \text { so that }
$$

$$
I \ddot{\theta}+B \dot{\theta}+K \theta=\tau_{d}
$$

$$
\ddot{\theta}+2 \zeta \omega_{n} \dot{\theta}+\omega_{n}^{2} \theta=\widetilde{\tau}_{d}
$$

where, in this case,

$$
\zeta=\frac{B}{2 \sqrt{K I}}, \quad \text { and } \quad \omega_{n}=\sqrt{K / I}
$$

Class Exercise

Transfer Functions

$I N(s)-O U T(s) H(s)=e(s)=\frac{O U T(s)}{G(s)}$

$$
\begin{aligned}
I N(s) & =\operatorname{OUT}(s)\left[\frac{1}{G(s)}+H(s)\right]=\operatorname{OUT}(s)\left[\frac{1+G(s) H(s)}{G(s)}\right] \\
\frac{O U T(s)}{I N(s)} & =\frac{G(s)}{1+G(s) H(s)} \quad \text { closed-loop transfer function }
\end{aligned}
$$

Spring-Mass-Damper
 Closed-Loop Transfer Function

$$
\begin{aligned}
\tilde{f(t)} & =\ddot{x}+2 \zeta \omega_{n} \dot{x}+\omega_{n}^{2} x \\
\tilde{F(s)} & =\left(s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}\right) X(s)
\end{aligned}
$$

so that, we can write it in the form of a closed-loop transfer function

$$
\frac{X(s)}{F(s)}=\frac{1}{\frac{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}{}}
$$

$$
\tilde{F}_{\text {in }}(s) \rightarrow \frac{1}{\frac{1}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}} \rightarrow X_{\text {out }}(s)
$$

...with a change of variable, we can re-write this transfer function to accept a position reference input...

Spring-Mass-Damper Equilibrium Setpoint Control

...note that if we apply a constant force $F(s)$ to the mass, the system will settle into a steady state deflection $X_{r e f}(s) \ldots$

$$
\tilde{F(s)}=\mathrm{constant}=K X_{r e f}(s)
$$

therefore,

$$
\begin{aligned}
& K X_{r e f}(s)=\left(M s^{2}+B s+K\right) X_{a c t}(s), \quad \text { and } \\
& \frac{X_{a c t}(s)}{X_{r e f}(s)}=\frac{K}{M s^{2}+B s+K}=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}} \\
& \quad X_{r e f}(s) \rightarrow \frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}} \rightarrow X_{a c t}(s)
\end{aligned}
$$

Solving with the Laplace Transform Tables

The Time Domain Response

$$
\ldots \text { at } t=0 \text {, apply a unit step reference input }
$$

$$
\begin{array}{cl}
x_{r e f}(t)=1 & \text { Therefore, if we let } \omega_{n}=1 \text { and } \zeta=1 \\
X_{r e f}(s)=\frac{1}{s} & X_{a c t}(s)=\left[\frac{1}{s^{2}+2 s+1}\right]\left[\frac{1}{s}\right]=\frac{1}{s(s+1)^{2}}
\end{array}
$$

partial-fraction expansion of this quotient yields:

$$
\begin{aligned}
X_{a c t}(s) & =\frac{1}{s(s+1)^{2}}=\frac{a}{s}+\frac{b}{(s+1)}+\frac{c}{(s+1)^{2}} \\
& =\frac{1}{s}+\frac{-1}{(s+1)}+\frac{-1}{(s+1)^{2}}
\end{aligned}
$$

The inverse Laplace transform (from the tables)

$$
x_{a c t}(t)=1-e^{-t}-t e^{-t}
$$

so that at $t=0, x_{\text {act }}(t)=0$, but as $t \rightarrow \infty$, the robot converges to the reference position.

Frequency-Domain Response

to get some insight into how different input frequencies influence the output response, consider a sinusoidal input with frequency ω.

$$
x_{r e f}(t)=A \cos \omega t \quad R(s)=\frac{A s}{s^{2}+\omega^{2}}=\frac{A s}{(s-i \omega)(s+i \omega)}
$$

and the partial fraction expansion incorporates two more terms

$$
C(s)=C_{c l t f}(s)+\frac{k_{1}}{s-i \omega}+\frac{k_{2}}{s+i \omega}
$$

whose roots $s= \pm i \omega$ are purely imaginary and the inverse Laplace transform of these terms yields time domain responses like:

$$
k_{1} e^{i \omega t} \text { and, } k_{2} e^{-i \omega t}
$$

...the steady state response of the second order system in response to a sinusoidal input is also a contact amplitude sinusoid of the same frequency...

Frequency-Domain Response continued

the magnitude of the sinusoidal response will be proportional to the amplitude of the forcing function, A, and the gain expressed in the closed-loop transfer function,

$$
\frac{G(s)}{1+G(s) H(s)}=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}=\frac{1}{\left(s / \omega_{n}\right)^{2}+2 \zeta\left(s / \omega_{n}\right)+1}
$$

The gain from the CLTF can be determined by evaluating the CLTF at the roots introduced by the forcing function $(s= \pm i \omega)$. The result is a complex number with corresponding magnitude and phase:

$$
\begin{aligned}
\left|\frac{G(s)}{1+G(s) H(s)}\right|_{s=i \omega} & =\frac{1}{\left[\left(1-\left(\omega / \omega_{n}\right)^{2}\right)^{2}+\left(2 \zeta\left(\omega / \omega_{n}\right)\right)^{2}\right]^{1 / 2}} \\
\phi(\omega) & =-\tan ^{-1}\left(\frac{2 \zeta\left(\omega / \omega_{n}\right)}{1-\left(\omega / \omega_{n}\right)^{2}}\right)
\end{aligned}
$$

Frequency-Domain Response

(a)
 $\left|C_{c l t f}(s)\right|_{s=i \omega}$,

Class Exercise

