THE OF THE SECTION

Practical Stuff: Roger MotorUnits.c Master Control Procedure

```
the simulator runs your control_roger() procedure inside
"Project #1 - Basic Motor Units" every millisecond
```

```
/* == the simulator executes control_roger() once ==*/
/* == every simulated 0.001 second (1000 Hz) ==*/
control_roger(roger, time)
Robot * roger;
double time;
{
    update_setpoints(roger);
    // turn setpoint references into torques
    PDController_base(roger, time);
    PDController_arms(roger, time);
    PDController_eyes(roger, time);
}
```


Roger MotorUnits.c PDController_eyes()

```
double Kp_eye, Kd_eye;
// gain values set in enter_params()
/* Eyes PD controller:
      -pi/2 < eyes_setpoint < pi/2 for each eye */
/*
PDController_eyes(roger, time)
Robot * roger;
double time;
{
  int i;
  double theta_error;
  for (i = 0; i < NEYES; i++) {</pre>
    theta_error = roger->eyes_setpoint[i]
                      - roger->eye_theta[i];
    // roger->eye_torque[i] = ...
  }
}
```

```
Roger MotorUnits.c
          PDcontroller_arms()
double Kp_arm, Kd_arm;
// gain values set in enter_params()
/* Arms PD controller: -pi < arm_setpoint < pi */</pre>
/* for the shoulder and elbow of each arm
                                                */
PDController_arms(roger, time)
Robot * roger;
double time;
{
  int i;
  double theta_error;
  for (i = LEFT; i <= RIGHT; ++i) {</pre>
    theta_error = roger->arm_setpoint[i][0]
                     - roger->arm_theta[i][0];
    // -M_PI < theta_error < +M_PI</pre>
    // roger->arm_torque[i][0] = ...
    // roger->arm_torque[i][1] = ...
  }
}
```


Basic Tools of Linear Control Theory

Outline

- Negative Feedback
- Open- and Closed-Loop Control
- The Canonical Spring-Mass-Damper Lyapunov Stability
- Laplace Transform
- the Characteristic Equation
- Equilibrium Setpoint Control A Robot Controller class exercise - Roger's eye and PD control
- Closed-Loop Transfer Function
- Frequency-Domain Response class exercise - Roger's eye frequency-domain response

- α -motor neurons initiate motion—they're fast
- each will innervate an average of 200 muscle fibers.
- relatively slow γ -motor neuron regulates muscle tone by setting the reference length of the spindle receptor.
- Golgi tendon organ measures the tension in the tendon and inhibits the α -motor neuron if it exceeds safe levels

- If (spindle length > reference), the α -motor neuron cause a contraction of the muscle tissue
- if (spindle length < reference), the α -motor neuron is inhibited, allowing the muscle to extend

Negative Feedback

...the α -motor neuron changes its output so as to cancel some of its input...

Negative Feedback

- first submitted for a patent in 1928 by Harold S. Black
- it explained the operating principle of many devices including Watt's governor that pre-dated it by some 40 years.
- catalyzed the field of cybernetics
- now heralded as the fundamental principle of stability in compensated dynamical systems

The Muscle Stretch Reflex

open-loop -

a trigger event causes a response without further stimulation

withdrawl reflex

closed-loop -

a (time-varying) setpoint is achieved by constantly measuring and correcting in order to actively reject disturbances

Norbert Weiner - cybernetics (helmsman), homeostasis, endocrine system

where:

 $\omega_n = (K/m)^{1/2}$ [rad/sec] - natural frequency $\zeta = B/2(Km)^{1/2}$ $0 \le \zeta \le \infty$ - damping ratio $x'(t) = x(t) - x_{ref}$ accounts for arbitrary reference positions

Stability - the origin of the state space is stable if there exists a region, S(r), such that states which start within S(r) remain within S(r).

Asymptotic Stability - a system is asymptotically stable in S(r) if as $t \to \infty$, the system state approaches the origin of the state space.

Analytic Stability -Lyapunov's Second/Direct Method

<u>Define</u>: an arbitrary scalar function, $V(\mathbf{x}, t)$, called a *Lyapunov* function, continuous is all first derivatives, where \mathbf{x} is the state and t is time,

Iff: If the function, $V(\mathbf{x}, t)$, exists such that:

<u>Then</u>: the system described by V is asymptotically stable in the neighborhood of the origin.

... if a system is stable, then there exists a suitable Lyapunov function.

...if, however, a particular Lyapunov function does not satisfy these criteria, it is not necessarily true that this system is unstable.

EXAMPLE: spring-mass-damper

system dynamics:

$$\ddot{x} + \frac{B}{m}\dot{x} + \frac{K}{m}x = 0$$

$$E = \int_{0}^{v} (mv)dv + \int_{0}^{x} (Kx)dx$$

= $\frac{1}{2}mv^{2} + \frac{1}{2}Kx^{2}$
= $\frac{1}{2}m\dot{x}^{2} + \frac{1}{2}Kx^{2}$

Lyapunov function:

$$V(\mathbf{x}, t) = E = \frac{m\dot{x}^2}{2} + \frac{Kx^2}{2}$$
(a) $V(0, t) = 0, \quad \checkmark$
(b) $V(\mathbf{x}, t) > 0, \quad \checkmark$
(c) $\partial V/\partial t$ negative definite?

EXAMPLE: spring-mass-damper Lyapunov function: $V(\mathbf{x}, t) = E = \frac{m\dot{x}^2}{2} + \frac{Kx^2}{2}$

$$\frac{dE}{dt} = m\dot{x}\ddot{x} + Kx\dot{x}$$

$$\frac{dE}{dt} = m\dot{x}\left[-(B/m)\dot{x} - (K/m)x\right] + Kx\dot{x}$$

$$\frac{dE}{dt} = -B\dot{x}^2$$

stable? or not stable?

EXAMPLE: spring-mass-damper

...the entire state space is asymptotically stable for B > 0.

Recap: Introduction to Control

So far, we have:

- introduced the concept of negative feedback in robotics and biology;
- proposed the spring-mass-damper (SMD) as a prototype for proportional-derivative (PD) control;
- we derived the dynamics for the SMD using Newton's laws and a free body diagram; and
- we introduced Lypunov's Direct Method to show the the SMD (and thus PD control) is asymptotically stable.

Now: we describe more tools for analyzing closed-loop linear controllers — the Laplace transform and transfer functions

Tools: Complex Numbers

Cartesian form: $s = \sigma + j\omega$

- $\sigma = Re(s)$ is the *real* part of s
- $\omega = Im(s)$ is the *imaginary* part of s
- $j = \sqrt{-1}$ (sometimes I may use i)

Polar form: $s = re^{j\phi}$

- $r = \sqrt{\sigma^2 + \omega^2}$ is the *modulus* or *magnitude* of *s*
- $\phi = atan(\omega/\sigma)$ is the angle or phase of s
- Euler's formula: $e^{j\phi} = cos(\phi) + jsin(\phi)$

complex exponential of $s = \sigma + j\omega$:

$$e^{st} = e^{(\sigma + j\omega)t} = e^{\sigma t}e^{j\omega t} = e^{\sigma t}\left[\cos(\omega t) + j\sin(\omega t)\right]$$

Laplace Transform

$$F(s) = \mathcal{L}[f(t)] = \int_0^\infty f(t)e^{-st}dt$$
 where $s = \sigma + j\omega$

- F(s) is a complex-valued function of complex numbers
- s is called the complex frequency variable in units of $\left[\frac{1}{sec}\right]$; t is time in [sec]; st is unitless

The Laplace integral will converge if:

- f(t) is piecewise continuous,
- f(t) is of exponential order i.e., there exists an a such that $|f(t)| \leq Me^{at}$ for all t > T where T is some finite time.

Example: Laplace transform of $f(t) = e^t$

$$F(s) = \int_0^\infty e^t e^{-st} dt = \int_0^\infty e^{(1-s)t} dt = \frac{1}{1-s} e^{(1-s)t} \bigg|_0^\infty$$

if we assume that Re(s) > 1 so that $e^{(1-s)t} \to 0$ as $t \to \infty$, then

$$F(s) = \frac{1}{1-s} \left[e^{(1-s)\infty} - e^{(1-s)0} \right] = \frac{1}{s-1}$$

therefore,

$$\mathcal{L}[e^t] = \frac{1}{s-1}$$

Example: Laplace transform of "unit step"

unit step: u(t) = 1 (for $t \ge 0$)

$$F(s) = \int_0^\infty e^{-st} dt = -\frac{1}{s} e^{-st} \bigg|_0^\infty = \frac{1}{s}$$

therefore,

$$\mathcal{L}[u(t)] = \frac{1}{s}$$

...fortunately, a lot of these examples have already been worked out by other people and published in tables...

Laplace Transform Pairs

Name	f(t)	F(s)
unit impulse	$\delta(t)$	1
unit step	u(t)	$\frac{1}{s}$
ramp	t	$\frac{1}{s^2}$
n^{th} -order ramp	t^n	$\frac{n!}{s^{n+1}}$
exponential	e^{-at}	$\frac{1}{s+a}$
ramped exponential	$\frac{1}{(n-1)!}t^{n-1}e^{-at}$	$\frac{1}{(s+a)^n}$
sine	$\sin at$	$\frac{a}{s^2 + a^2}$
cosine	$\cos at$	$\frac{s}{s^2 + a^2}$
damped sine	$e^{-at}sin\omega t$	$\frac{\omega}{(s+a)^2+\omega^2}$
damped cosine	$e^{-at}sin\omega t$	$\frac{s+a}{(s+a)^2+\omega^2}$
hyperbolic sine	$\sinh at$	$\frac{a}{s^2 - a^2}$
hyperbolic cosine	$\cosh at$	$\frac{s}{s^2 - a^2}$

Laplace Transform

...so what does this do for us?

if we assume that the robot movements are functions of time f(t), such that

 $f(t) \sim e^{st}$

then, from calculus:

$$\frac{d}{dt} [f(t)] = \dot{f}(t) \sim s e^{st}$$
$$\int f(t) dt \sim \frac{1}{s} e^{st}$$

let's say this a different way (ignoring some details about boundary conditions for now), if $\mathcal{L}[f(t)] = F(s)$, then

$$\mathcal{L}\left[\frac{df}{dt}\right] = sF(s) , \text{ and}$$
$$\mathcal{L}\left[\int f(t)dt\right] = \frac{1}{s}F(s)$$

Laplace Transform Differential Equations

for example,

$$\dot{f} + af = 0$$

i.e. the "slope" of function f~(df/dt) is proportional to the value of the function, df/dt=-af

assuming $f(t) \sim e^{st}$:

$$sF(s) + aF(s) = 0$$

(s+a)F(s) = 0

and the first-order differential equation is transformed into polynomial (s + a),

root (s = -a) tells us more about function f(t),

$$f(t) \sim A e^{-at}$$

where A is a constant that depends on *boundary conditions*, we will look at that in subsequent examples.

Implications for the Harmonic Oscillator

$$\ddot{x} + 2\zeta\omega_n\dot{x} + \omega_n^2\theta = \stackrel{\sim}{f_d}(t) \stackrel{\stackrel{\sim}{\to}}{\underset{\mathcal{L}^{-1}(\cdot)}{\leftarrow}} \left[s^2 + 2\zeta\omega_n s + \omega_n^2\right]X(s) = \stackrel{\sim}{F_d}(s)$$

the homogeneous (unforced) form (i.e. when $\tilde{f}_d = 0$)

yields the *characteristic equation* of the 2^{nd} -order oscillator

$$s^2 + 2\zeta\omega_n s + \omega_n^2 = 0$$

Roots of the Characteristic Equation

$$s^2 + 2\zeta\omega_n s + \omega_n^2 = 0$$

roots \Rightarrow values of s in Ae^{st} that satisfy the original differential equation

$$\ddot{x} + 2\zeta\omega_n \dot{x} + \omega_n^2 x = 0$$

$$s_{1,2} = \frac{-2\zeta\omega_n \pm \sqrt{(2\zeta\omega_n)^2 - 4\omega_n^2}}{2} = \frac{2\omega_n[-\zeta \pm \sqrt{\zeta^2 - 1}]}{2}$$
$$= -\zeta\omega_n \pm \omega_n \sqrt{\zeta^2 - 1},$$

three cases:

- repeated real roots ($\zeta = 1$)
- distinct real roots $(\zeta > 1)$
- complex conjugates roots ($\zeta < 1$)

For two distinct roots

$$x(t) = A_0 + A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

the solution in $t \in [0, \infty)$ requires three boundary conditions to solve for three unknowns A_0, A_1 , and A_2

$$\begin{aligned}
x(0) &= x_0 = A_0 + A_1 + A_2 \\
\dot{x}(0) &= \dot{x}_0 = s_1 A_1 + s_2 A_2, \\
x(\infty) &= x_\infty = A_0
\end{aligned}$$

so, a complete time-domain solution is determined

$$x(t) = x_{\infty} + \frac{(x_0 - x_{\infty})s_2 - \dot{x}_0}{s_2 - s_1} e^{s_1 t} + \frac{(x_0 - x_{\infty})s_1 - \dot{x}_0}{s_1 - s_2} e^{s_2 t}$$

Roots of the Characteristic Equation

given boundary conditions $x_0 = \dot{x}_0 = 0$ and $x_\infty = 1.0$ the solution simplifies to

 $(K=1.0\ [N/m],\ M=2.0\ [kg])$

Closed-Loop Control

sample and hold $\Delta t = \tau$ where $\frac{1}{\tau}$ [Hz] is the servo rate

A Robot Controller

the controller samples θ and $\dot{\theta}$ and drives the motor to emulate the analog spring and damper

$$\tau_m = -B\dot{\theta} - K\theta$$

$$\sum \tau = I\ddot{\theta} = \tau_d + \tau_m = \tau_d - B\dot{\theta} - K\theta, \quad \text{so that}$$

$$I\ddot{\theta} + B\dot{\theta} + K\theta = \tau_d$$

$$\ddot{\theta} + 2\zeta\omega_n\dot{\theta} + \omega_n^2\theta = \widetilde{\tau_d}$$

where, in this case,

$$\zeta = \frac{B}{2\sqrt{KI}}, \text{ and } \omega_n = \sqrt{K/I}$$

Class Exercise

Transfer Functions

$$IN(s) - OUT(s)H(s) = e(s) = \frac{OUT(s)}{G(s)}$$

$$IN(s) = OUT(s) \left[\frac{1}{G(s)} + H(s)\right] = OUT(s) \left[\frac{1 + G(s)H(s)}{G(s)}\right]$$

$$\frac{OUT(s)}{IN(s)} = \frac{G(s)}{1 + G(s)H(s)}$$
closed-loop transfer function

Spring-Mass-Damper Closed-Loop Transfer Function

so that, we can write it in the form of a closed-loop transfer function

$$\frac{X(s)}{\overset{\sim}{F(s)}} = \boxed{\frac{1}{s^2 + 2\zeta\omega_n s + \omega_n^2}}$$

$$\widetilde{F}_{in}(s) \to \boxed{\frac{1}{s^2 + 2\zeta\omega_n s + \omega_n^2}} \to X_{out}(s)$$

...with a change of variable, we can re-write this transfer function to accept a position reference input...

Spring-Mass-Damper Equilibrium Setpoint Control

...note that if we apply a constant force F(s) to the mass, the system will settle into a steady state deflection $X_{ref}(s)$...

$$\overset{\sim}{F(s)} = constant = KX_{ref}(s)$$

therefore,

$$KX_{ref}(s) = \left(Ms^2 + Bs + K\right)X_{act}(s), \text{ and},$$

$$\frac{X_{act}(s)}{X_{ref}(s)} = \frac{K}{Ms^2 + Bs + K} = \boxed{\frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}}$$

$$X_{ref}(s) \rightarrow \boxed{\frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}} \rightarrow X_{act}(s)$$

Solving with the Laplace Transform Tables

The Time Domain Response

... at t = 0, apply a unit step reference input

 $x_{ref}(t) = 1 \qquad \text{Therefore, if we let } \omega_n = 1 \text{ and } \zeta = 1$ $X_{ref}(s) = \frac{1}{s} \qquad X_{act}(s) = \left[\frac{1}{s^2 + 2s + 1}\right] \left[\frac{1}{s}\right] = \frac{1}{s(s+1)^2}$

partial-fraction expansion of this quotient yields:

$$X_{act}(s) = \frac{1}{s(s+1)^2} = \frac{a}{s} + \frac{b}{(s+1)} + \frac{c}{(s+1)^2}$$
$$= \frac{1}{s} + \frac{-1}{(s+1)} + \frac{-1}{(s+1)^2}$$

The inverse Laplace transform (from the tables)

 $x_{act}(t) = 1 - e^{-t} - te^{-t}$

so that at t = 0, $x_{act}(t) = 0$, but as $t \to \infty$, the robot converges to the reference position.

Frequency-Domain Response

to get some insight into how different input *frequencies* influence the output response, consider a sinusoidal input with frequency ω .

$$x_{ref}(t) = A\cos\omega t$$
 $R(s) = \frac{As}{s^2 + \omega^2} = \frac{As}{(s - i\omega)(s + i\omega)}$

and the partial fraction expansion incorporates two more terms

$$C(s) = C_{cltf}(s) + \frac{k_1}{s - i\omega} + \frac{k_2}{s + i\omega}.$$

whose roots $s = \pm i\omega$ are purely imaginary and the inverse Laplace transform of these terms yields time domain responses like:

$$k_1 e^{i\omega t}$$
 and, $k_2 e^{-i\omega t}$

...the steady state response of the second order system in response to a sinusoidal input is also a contact amplitude sinusoid of the same frequency...

Frequency-Domain Response continued

the magnitude of the sinusoidal response will be proportional to the amplitude of the forcing function, A, and the gain expressed in the closed-loop transfer function,

$$\frac{G(s)}{1 + G(s)H(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{1}{(s/\omega_n)^2 + 2\zeta(s/\omega_n) + 1}$$

The gain from the CLTF can be determined by evaluating the CLTF at the roots introduced by the forcing function $(s = \pm i\omega)$. The result is a complex number with corresponding magnitude and phase:

$$\left|\frac{G(s)}{1+G(s)H(s)}\right|_{s=i\omega} = \frac{1}{\left[(1-(\omega/\omega_n)^2)^2 + (2\zeta(\omega/\omega_n))^2\right]^{1/2}}$$

$$\phi(\omega) \ = \ -tan^{-1} \left(\frac{2\zeta(\omega/\omega_n)}{1 - (\omega/\omega_n)^2} \right)$$

Class Exercise

