Base Control - Practical Stuff

'1863'

Two spring-damper configurations with different gains that apply
a longitudinal force f, and rotational moment m. to the robot.

PDBase_translate() PDBase_rotate()

4
fy), Q\

\
\

o= atan2(§ f)

the GUI provides references in the world coordmate frame

ry = Ty _ Lref — Lact
Ty W Yref — Yact 0%
BUT, the translation and rotation errors depend on this error
written in the base coordinate frame...
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Base Control - Practical Stuff

the translation and rotation errors depend on this error written in
the base coordinate frame.

Ty Ty
P — ry | ST Ty where, Ty 1sa 4 x4
0 0 homogeneous transform
1 ]p Ly

and the translation error is just the & component of 7p.
procedure construct_wTb() is provided for your use

The command [ f, m. |1 on the base is transformed into wheel

torques using via the differential steering geometry:.

r=Jw

(7] = (10 s 1 ]
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Roger Vision (Foveation)
Practical Stuft

Roger’s eyes are pinhole RGB cameras with a focal length of 64
pixels that produce a one dimensional image 128 pixels wide.

image
plane

47 2h g
N_i:::::::::::_---
,,,,,,, TN

pinhole
aperture

coordinate (x,y, z) projects to image plane coordinates

2 u
= ——, and, - = 7

v
[ foooa
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Roger Vision (Foveation)
Practical Stuft

implement procedure average red pixel (): checks for the color
red on both image planes

if (there is red detected in both images) {
estimate image coordinates, ul and ur,
of the center of the red segments on the
left and right images and return(TRUE)

+
else return(FALSE);

use ul and ur to compute the
angular error for use in oculo-
motor controllers that orient each
eye to the stimulus—a process
called “foveation”—by updating
setpoints for the eyes to center the
image of the red ball in both image
planes.
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Kinematics

A branch of dynamics that deals with aspects of motion
apart from considerations of force and mass— Websters
dictionary

links - individual rigid bodies that collectively form a robot.

joints - connect links in pairs using revolute or prismatic con-
straints.

prismatic joint - one link moves linearly (as in a slider in a
guide link) relative to another.

revolute joint - one link rotates about a center of rotation
(a bearing) rigidly connected to another link.

kinematic chain - an assemblage of links connected via joints.
mechanism - a kinematic chain with one fixed (ground) link.

closed chain - a kinematic chain with every link connected through
joints to two adjacent links.
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Kinematics (cont.)

open chain - a kinematic chain where one link (the unitary link)
is connected to a single joint.

parallel chain - a mechanism with open or closed chains con-
nected through multiple joints to a common link

IH—t——=e
H—IH—I

configuration variables - the parameters (lengths or angles)
of a mechanism that can be used to determine the spatial con-
ficuration of the mechanism.

degrees of freedom The minimum number of configuration vari-
ables necessary to fully define the configuration of a mecha-
nism.
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Example - A Familiar Mechanism

Yo

ARRRRNNNY

177777777

1. how many links does it have?
2. how many joints does it have?

3. how many degrees of freedom does it have?
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Configuration Space

...the space defined by independently controllable configuration
variables in which a particular configuration is a single (point)
coordinate

O o

demonstration - C/Roger/harmonic fnc/x
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Spatial Tasks

endpoint/wrist

gaze gaze
right left

stati on| A goal

obj1 7 obj 2

L Lk
I 'base

wor
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Two Different
Spatial Representations

e
goal i
| frame Cartesian space
G description

7

El

configure space
description

x,y,0) world
frame W H
R 0.08m

“nonholonomic” contraints:
-
f(g.q) =1"q = [sin(0) -cos(0) 0] | ¥ | =0,
0

where, [ is the vector in the -y plane that is orthogonal to the
current vehicle heading (the lateral direction).
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Schematic Diagrams of Open-Chain
Mechanisms

End-Effector
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Spatial Relationships

Free Bodies

A free body has 6 spatial degrees of freedom:

translations: t € R?
rotations: R € SO(3)

Translation
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Spatial Relationships

Rotations

B B’ B B}
r :TxZB—FTy]B—I—TZ]CB

C o C o
T :rxchrry]CJrrsz

rB = sRe ¢

i %
_TQ;_ LB 1C 7:B kC —Tx_
Ty = | JB-ic B - ke Ty
_TZ_B kB ZC‘ kB kC _TZ_C
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Properties of the Rotation Matrix

e columns and rows of R are orthonormal (orthogonal and unit
length)

® R—l _ RT
e det(R) = +1 for right-handed convention

e the set of all n X n matrices R that have these properties are
called the Special Orthogonal group of order n

R € SO(n)
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Special Properties of SO(3)

e richt hand rule:

TXY = 2 ( )
gxi =@ Xy 2
Axd =4 right handed coordinate systems

e SO(3) is a “group” under multiplication:

1. closure: if Ry, Ry € SO(3) = R1Ry € SO(3)
2. identity:

1
I;=10
0

S = O

0
0] € SO(3)
1

3. inverse: R~ = R/'
4, associativity: <R1 RQ) R3 = R1 <R2 Rg)

5. in general elements of SO(3) do not commute:

RiR#Ro Ry

15 Copyright (©2019 Roderic Grupen



Spatial Relationships

The Homogeneous Transform

_ i} o
R¢ | 4t
ATo = BRCIAYE | o SE(3) To = :y c R’
Z
000 1 | 1.
ra = alcre the “1”7 creates the
= pReorc+a4tp homogeneous position vector
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ATe = ra= Alc rc

000 1

e translate then rotate

e indicial notation:

— the sign of the transform is determined left to right, i.e. A
to C defines the sign of the rotation

— it transforms homogeneous position vectors in frame C' into
homogeneous position vectors in frame A
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cos(f) 0 sin(0)
0 L 0

—sin(0) 0 cos(9)
0 0 0

_ o O O
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Spatial Relationships

Inverting the Homogeneous Transform

ATo =
00 0 1
@) (—taf)
_ ) —t -y
T, =T~ ! = <y0> ( Yo
S T [
0o 0 0o 1
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20

ol3 =

0d1 113 213

Siﬂqg
0
0

coS1o —Sinis 0 licosy + lscosio

COS519
0

0

r = licos(0y) + lacos(01 + 05)
y = lLisin(0;1) + lasin(0) + 62))
0 = 0;+ 0,

0 l1sing + lasingo
1 0
0 1
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Useful Trignometric Identities

cos(01 + 02) = cos(01)cos(0y) — sin(01)sin(6s)
cos(0; — 0y) = cos(61)cos(6s) + sin(61)sin(6s)
sin(01 + 02) = sin(61)cos(6a) + cos(6y)sin(6)
sin(f; — 05) = sin(6;)cos(0s) — cos(6y)sin(6)
sin(0y) = cos(6)sin(6y + 0,) — sin(6y)cos(6; + 62)

cos(fy) = cos(bh)cos(0y + ) + sin(0;)sin(6, + 62)
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The Denavit-Hartenberg Conventions

Coordinate Frames

Axis i
Zi-1
along joint axis of joint i-1

X 1
along perpendicular from
joint axis i-1 to joint axis i
(note special case for
intersecting axes)

Yia
results from right-hand-rule
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Denavit-Hartenberg Parameters

from frame;_; to frame;:

a;—1

link length

perpendicular to both axes
not unique for parallel axes

Axis i

Qi1
link twist
measured about aj—1

0;

joint angle

measured about axis i
joint variable for revolute
fixed for prismatic

d;
link offset
measured along axis i

joint variable for prismatic
fixed for revolute

3 fixed parameters per joint, one variable
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= Za
0,1 —»
lo Xs la
Zs
Op,1 o ks =
i . OS
d2 j—1|ai—1| d; 0i
1 0 0 0 01
2 | -90¢ 0 do | -90¢
3 | 90t | Io 0 03
4 | 90t 0 0 04
5 0 —lgq | s 0
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¥

I‘l..r:
{Ef

0;
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Denavit-Hartenberg - Parametric

,:I"I

Homogeneous Transform

the angle between Z; and Z;4, measured about X;

the distance from Z; to Z;,,, measured along X;

.,

the distance from X;_ 4 to )?.,- measured along f:.,—_

.

the angle between 5(“;-_1 and i’“,; measured about Z;

1T, = Rx(aj—1) Dx(ai—1) Rz(6;) Dz(d;)
I (391; —89?; 0 a;—1 ]
_ | sbicaj—1 cbicoy_1 —soy_1 —say_1d;
o 891' Sy _1 (39?; S¥; 1 Clx; 1 C¥;_1 di
0 0 0 1

Copyright (©2019 Roderic Grupen



Inverse Kinematics: X — ©

reachability, dexterity, multiple solutions
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Closed-Form Inverse
Kinematic Solutions

e Picper (ca. 1968) general inverse kinematic solution

6 revolute joints have a closed form solution if 3 neighbor-
1ng j01nt axes intersect at a point

e Paul (ca. 1981) homogeneous transform-based generalized 1K

e Geometric Techniques
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Inverse Kinematics: EXAMPLE

.
.
.
.
. .
.
. .
.« .
.
s 3
o
. .
. .
.
.
.
.

(X.y)

e climinate 01, solve for two unique 65 solutions:

r* = 2°+vy°, and
xr = l101+l2612

y = l151 + 12519

S12 = S1C2 + €152
Cl2 = C1C2 — §152

rt = 2% +y* = lic] + 2locicin + 1565,
+1757 + 211251512 + 1557,
= 7+ 2llycy + 15

and, , , ,
re—107—1
B 1 9

= , co € |—1,4+1
< o, 7 | |
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<~
.' k1 = rec, [1 + ey
+/= . +/—
x\\el ky' =1s, = [s,
solve for both 6, solutions
i/~
s54c3 =1 9;/_:tcm_12 , and
2 _ 2 C9
82 — ]. — C2 k+/_
S;/_ = +/—(1 —03)1/2 o/ = tan™! 2
1
Therefore,

= kicy + kos1 = (req)cr + (18q)s1 = reos(a + 61)
y = k1s1+ kocy = (rcy)s1 + (rsq)c1 = rsin(a + 6q)

and ' 5
tan(a + 01) = rsin(a + 601) _Y
rcos(a+0,)
so that,
g = tcm_lg — ot
! x
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Inverse Kinematics: EXAMPLE

g

(x.y)

GIVEN (x,y) endpoint position goal:

r? = 22 + o2
ca = (r* =1 = 13)/(2lil2)
if (—1 < ey < +1)
s =4/ = (=)

] /-
9;/ = tan‘132c—
2
ki =1l + lreo
kil = 1yt
+/—-
at/— = tan‘lekl
Qf/_ = tan"'L — o/~

else “out of reach”

30
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Inverse Kinematics: EXAMPLE

Copyright (©2019 Roderic Grupen
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Pinhole Camera

...another kinematic system

image
plane
i 2}
_______:::::_:23 —
,,,,,, —— Il
: pinhole
aperture
f
focal
length
x-y plane X—z plane
y z

_ 1y I A

X X

u
perspective distortion - the pinhole projection distorts Eu-

clidean geometry so that parallel lines converge at “vanishing
points.”
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Depth Encoded as Disparity

p parallel gaze stereo encodes
| depth entirely in terms of dis-
/// | parity.
\
pinhole
aperture _f<y _ d)
uyp =
left right L
camera camera
_ —fly+4d)
U O Pplanes qq<0 Ur = .

rup = —f(y+d)
ru, = —f(y —d)
r(up —ug) = 2df

and

2df

(ur — ur)
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Reconstructing Space -
Binocular Stereopsis

pinhole
aperture -~/ “
/ AR I
calrﬁfetra -y y —
2d
U,
T . )\LCOS(’}/L> — ARCOS(WR)a
COS
Ly — s (V&)
cos(7t)

y o d+ Apsin(yr) = —d + Agsin(yg)

2dcos(Yr)
sin(Yr — V1)

2
A= 2deostun) L, =
sin(Yr — VL)

...depth by vergence and disparity...
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Jacobian - Locally Linear
Kinematic Transformations

nonlinear forward
kinematic mapping

x = f(q)

e manipulator forward kinematics

e sterco triangulation equations

the differential geometry of f(q) in the neighborhood of ¢ = a
is revealed in the Taylor series expansion:

dqof dq*o*f

f(a+dq) :f(a)—i—ﬁa—q—FTa—qZ—F...,SOthat
_a
fulda) = df = 5 dq

Jf /0q is the Jacobian - a (hyper)plane whose slope is
identical to the tangent to the function f(q) at q = a
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The Manipulator Jacobian:
linear mapping dO© — dX

x = lic1 + lrep

y = 1151 + las19

dx o —1181 — Z2812 —l2812 d@l
dy - lic1 + locyp  locyo d6o
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The Inverse Manipulator Jacobian:
do = J~ldXx

—5181 — 12812 —52312

det
lici + lacia laero

= lllg(ClSlg — 51612)
= 111282

The Jacobian is singular when sin(6y) = 0,0, = 0, 7. for V = 1=

in the x direction

[J]_l _ 1 [ lac12 l2512 ]
1155 | —lici — lacio —1151 — 2519
[9:1 ] 1 lacyo l2512 1
0 lhlysy | —licr — lacis —l1s1 —l2s12 | | O
o 1 [ Z2(312 ]
l1l282 i _llcl - Z2612
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The Manipulator Jacobian
in the Force Domain

Work out = Work in

FIAz = 71N

Ax = JABH, therefore

FYIAG) = 71 Af

FLg=7" or

T=J'F
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Review -
Eigenvalues and Eigenvectors

y=Ax
if A is a real n X n matrix, the polynomial
p(A) = det(A — A1)

is the characteristic polynomial of A.

for a root of the characteristic polynomial, \*,

A—-NT] =0, =*#0

p(A) : roots A* are eigenvalues

x* are the eigenvectors
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Review — EXAMPLE

Suppose:

A= [;l _H (A — \I) = [<4;A> (1—_1»]

det(A — AT) = (4 — \)(1—\) — (2)(=1)

= M —=5A+6=AN=2)(A—3)

so that, AT, =2, 3
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Review — EXAMPLE

Y1 _ 4 -1 L1 )\1’2 — 2, 3
Y2 2 1| | @

for Ay = 2 = (A — A) - [3 :Hm’{:o

) " 1\/5

for g =3 = (A — M) : [; :;]wgzo
1/\/§]

1 —To=0 = x1=2 jm%:[l/ﬂ

in general, eigenvectors are not necessarily orthogonal!
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Review — Quadratic Forms

Consider the quadratic AA”:
4 —1 4 2 17 7
MZ[Z 1”—11]:[7 5]

In this case:

N — 20 +36=0 = \jo=20.22, 1.78

when Ay = 20.22: when Ay = 1.78:
o _ [0.9085 o _ [ 04179
L7 1 0.4179 271 0.9085

the eigenvectors of the positive definite, symmetric quadratic
form are always orthogonal
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Review — Quadratic Forms

quadratic form can be used to define an ellipsoidal set:

E={y|y'My <k}inR"

for positive definite, symmetric matrix M € R"*",

this is easy to see in two dimensions:

a b
[ y1 2 | [b c] [??j;] :ayf+2by1y2+cy§.

the eigenvalues and eigenvectors of M determine the shape and
orientation of the ellipse determined by y’ My.
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EXAMPLE: Ellipsoidal Sets from
Quadratic Forms

returning to our previous example:

T
M = AA :=:[ . 5] o _ [0.9085] . _ [—0.4179
L7 104179 271 0.9085

E={yl|ly'My <k}inR’

The diagonalized form represents the quadratic in the eigenvector
basis where y = e1&; + es€s, where e = [e;] ey]!.

| 17 7 7| A 0
y[75 y=e | eSh
The boundary of set is defined by the equality y = A\jef+Xoe3 = k.

when e; =0, A\ef =k, and e; = /k/\
when e; =0, \se3 =k, and ey = VE/ s
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EXAMPLE: Ellipsoidal Sets from
Quadratic Forms

E={y|y' My <1} inR?

T
Y [7 5]y§1 L _[o90s5] . [-04179
L1 0.4179 271 0.9085
~ 92
q|2 lA
]-
Ve b |
. s
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Manipulator Velocity Conditioning

consider the manipulator Jacobian

v=1J(q)q

and furthermore, consider mapping a unit hypersphere in the joint
angle velocities through the Jacobian to Cartesian velocities

lal’=d"a=@+&+...+¢% <1,

q'qg= T ) (I ) =v [T H T No=0"II) v <.

input hypersphere g' ¢ < 1 + output hyperellipsoid that
satisfies v (JJ) 1 v <1

quadratic form v [JJ']"lv < 1 defines the
“velocity conditioning ellipsoid” that reveals the directional
sensitivity of the kinematic transformation.
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Force Conditioning

the same analysis can be applied to the transformation of torques
to Cartesian forces using the same manipulator Jacobian

7 =J' f, so that
= (I3 = FIIf <1

the Cartesian force capacity of a particular posture in the
manipulator is reflected by the ellipsoidal set

{FIF1(3I7) f <1

e the eigenvectors of (JJ') and (JJ?)~! are identical

o cigenvalues of (JJ)~! (velocity amplifier) are reciprocals of
the eigenvalues of (JJ') (force amplifier).
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velocity — force
ellipsoid ellipsoid
scaleis 1:4 scaleis 1:100

“...posture variation is a means through which motion and

strength characteristics of the arm is made compatible with
the task [Chiu87].”
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The Kinematics of Bipedalism

discovered in 1978 in Ethiopia by Mary Leakey, Australopithecus
afarensis is classified as an ape, not a human. It is a hominid—an
ape closely related to human beings in terms of overall body size,
brain size and skull shape. A. afarensis lived 2.9-3.9 million years
ago—Lucy was dated around 3.75 miliion years old.

contemporary lower body
“chimp” hand

long arms, short legs
knee and pelvis imply:

e cfficient climber, probably
spent time in the trees, and

e was bipedal on the ground
- walked much like we do.
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G . T

e found in Ethiopia near where Lucy was found
e dated to 4.4 million years old, about 4 feet tall, 120 pounds
e long arms/hands, short legs, prehensile foot

e a climbing biped
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Stereo Conditioning -
Localizability

... from before,

P 4cos(yr)eos(vL)
V=0+0 sin(Yr — Y1)
py = d+2 Jeos(r)sin(y1)

sin(Yr — VL) |

[ dpxl B lapx(avvzzm) 3px(677[],ém)] [ d’YL]

Opy(veR)  Opy(YLYR)
dp, > VLL z yafR R dvr
[y b e
sin?(yr — 1) | stn(yr)cos(yr) —sin(yr)cos(vr) | | dyr

relates velocities on the retina to velocities of the ball
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dy'dy = (I 'dr) (I Ydr) < 1
= dr' (I H' I dr <1
= dr'(JI) ldr < 1

if d~ represents the detection error on the retina, then the ellip-
soidal set {7|drT(JJ")'dr < 1} describes how the triangulation
equations map retinal errors into Cartesian errors.

93
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Summary: Kinematic Conditioning

manipulator conditioning

amplification precision
velocity g g=2"J1Tv<1 e;e; =€, (I e, <1
force T = f1IITf < 1 ele, = e?[JJT}_lef <1
visual acuity: dyldy = drt (JJ1)tdr < 1

e JJ! is positive definite, symmetric, and square in the dimen-
sion of the output space.

e The principal axes of the conditioning ellipsoid are the eigen-
vectors of M in the quadratic form and the amplification in
these directions are proportional to 1/1/A.

e The conditioning ellipsoid represents configuration dependent
anisotropy in a linear transform—principal axes are principal
transformations of the governing Jacobian and describe ampli-
fication in a kinematic device.
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