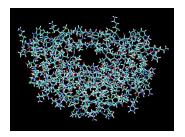
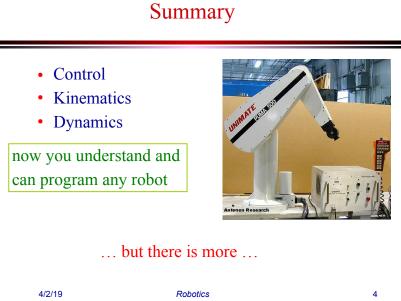


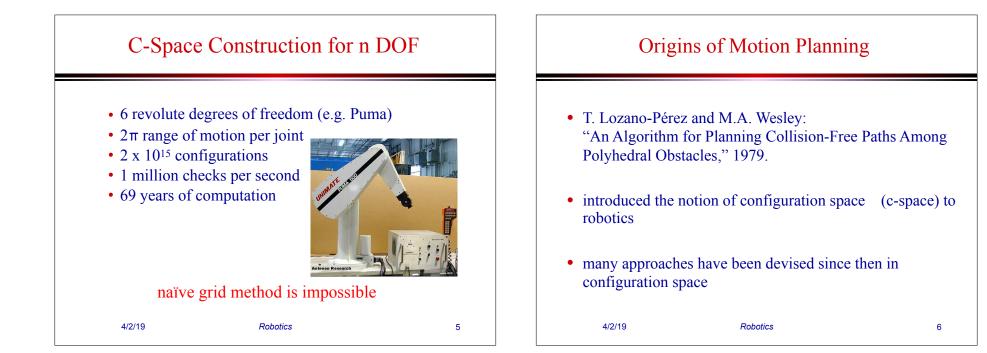
2 Why Motion Planning? Summary • Control Virtual Prototyping Character Animation • Kinematics Structural Molecular Biology Autonomous Control

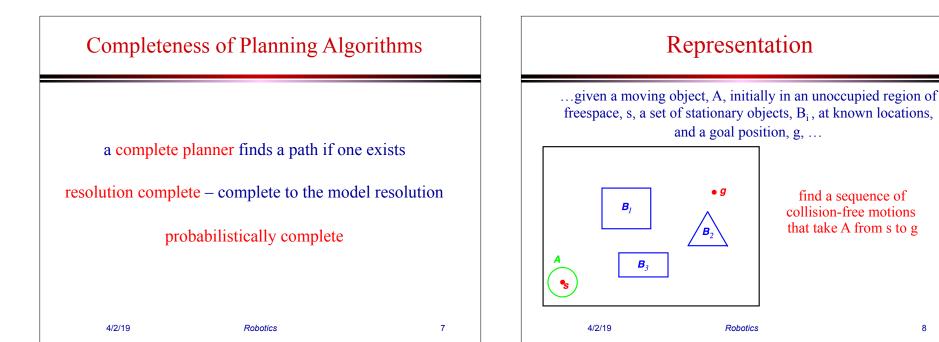


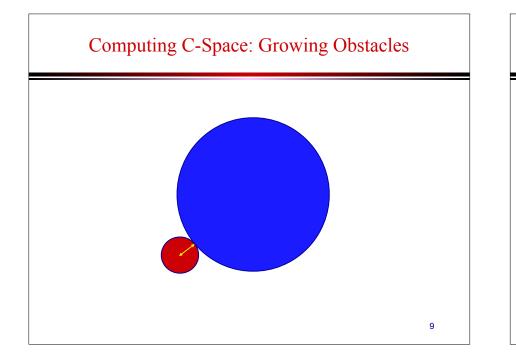


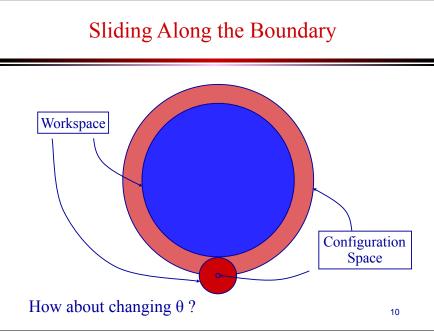
4/2/19

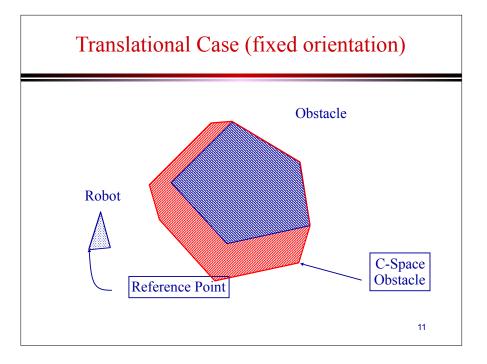
Robotics

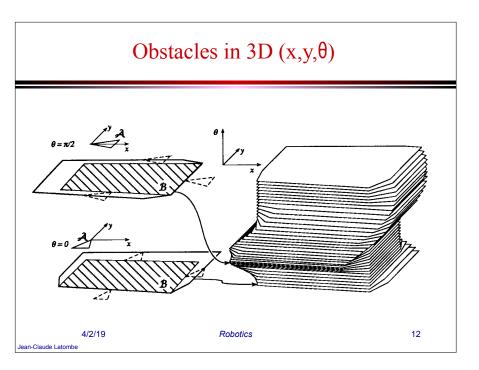


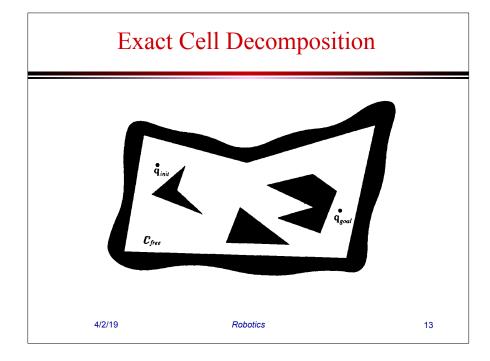




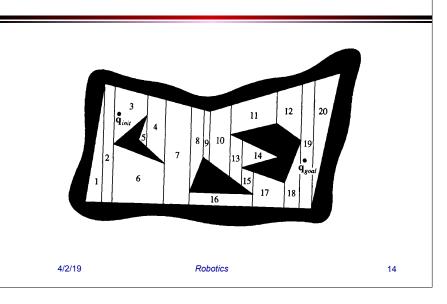


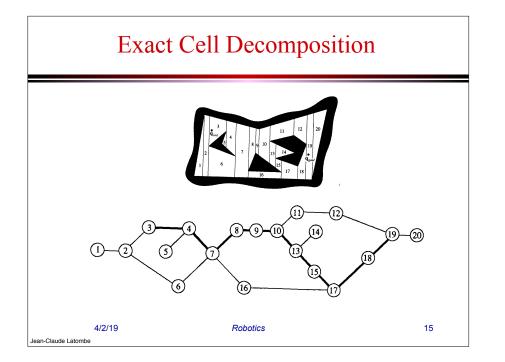


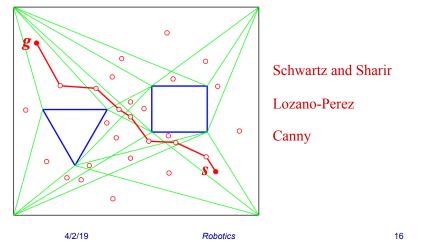


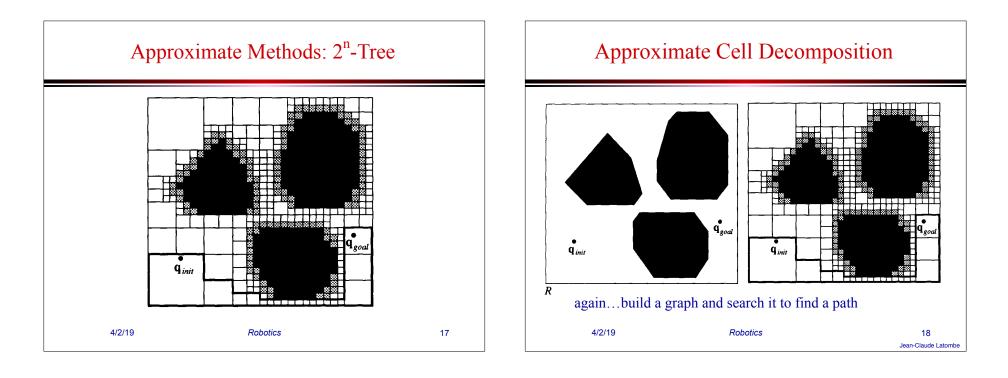


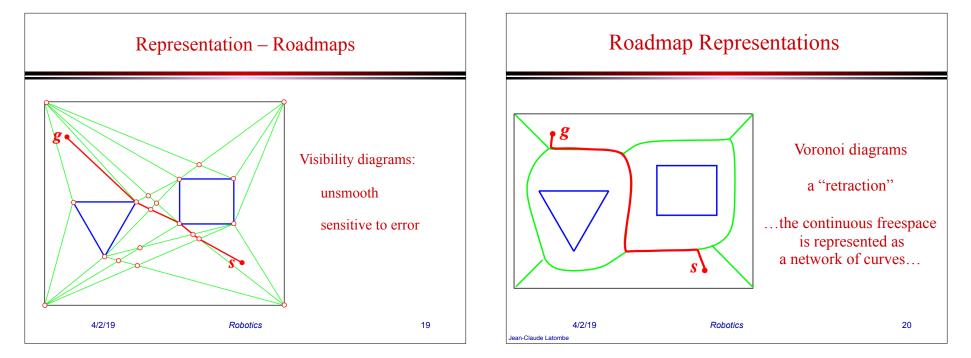
Exact Cell Decomposition

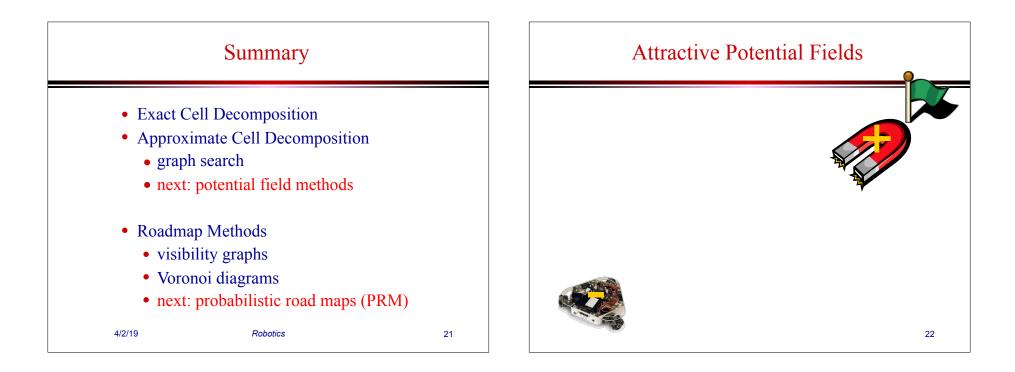


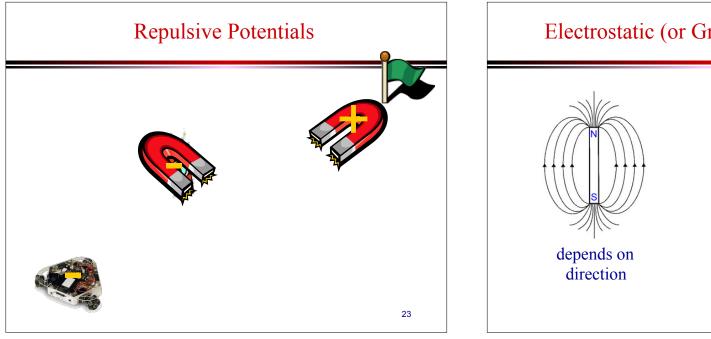


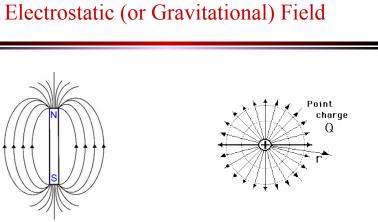


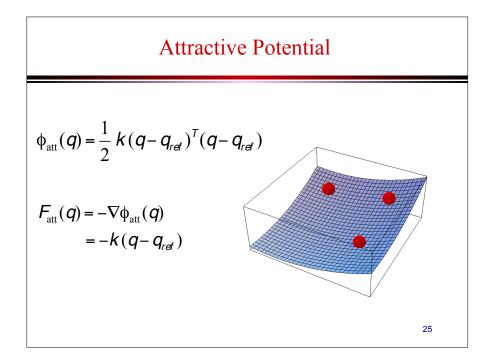


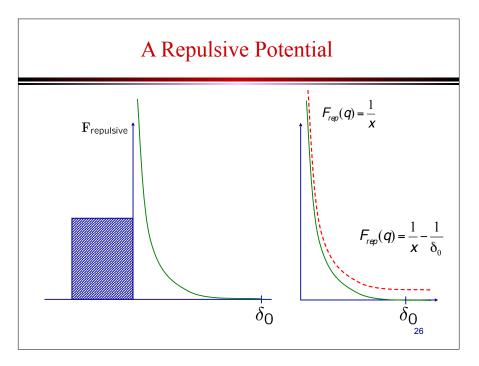


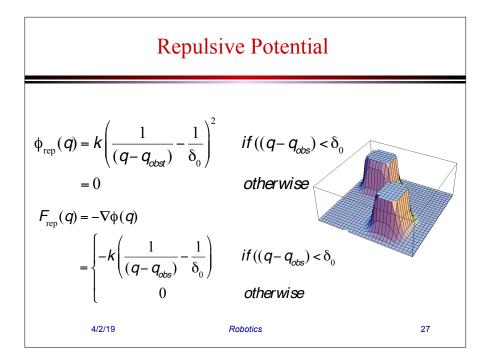


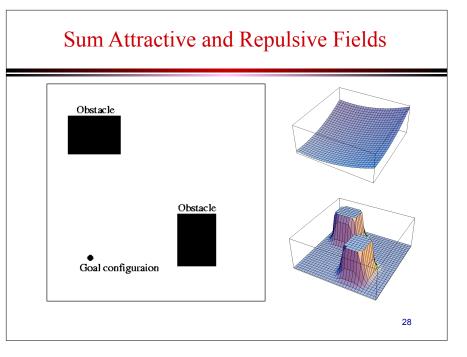


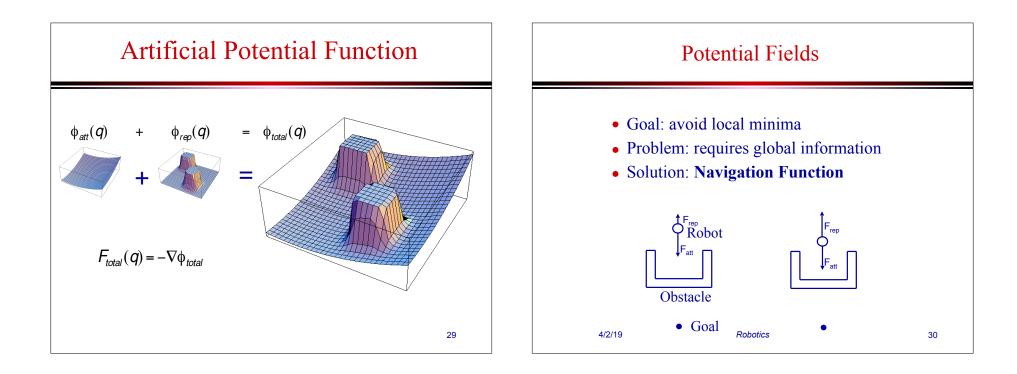












Navigation Functions

<u>Analyticity</u> – navigation functions are analytic because they are infinitely differentiable and their Taylor series converge to $\phi(q_0)$ as q approaches q_0

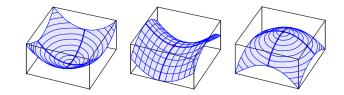
<u>Polar</u> – gradients (streamlines) of navigation functions terminate at a unique minima

4/2/19

31

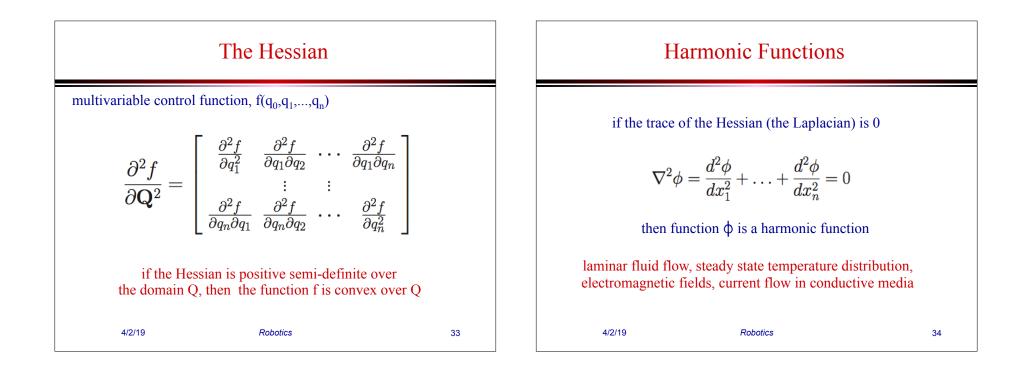
Navigation Functions

<u>Morse</u> - Critical points are places where the gradient of φ vanishes, i.e. minima, saddle points, or maxima are called critical values. Navigation functions have no degenerate critical points where the robot can get stuck short of attaining the goal.



<u>Admissibility</u> - practical potential fields must always generate bounded torques

Robotics



Properties of Harmonic Functions

$$abla^2 \phi = rac{d^2 \phi}{dx_1^2} + \ldots + rac{d^2 \phi}{dx_n^2} = 0$$

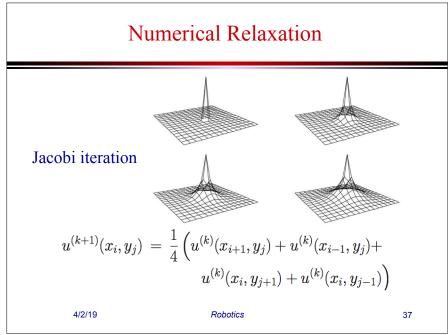
Min-Max Property -

...in any compact neighborhood of freespace, the minimum and maximum of the function must occur on the boundary.

Properties of Harmonic Functions

$$abla^2 \phi = rac{d^2 \phi}{dx_1^2} + \ldots + rac{d^2 \phi}{dx_n^2} = 0$$

Mean-Value - up to truncation error, the value of the harmonic potential at a point in a lattice is the average of the values of its 2n Manhattan neighbors.



Harmonic Relaxation: Numerical Methods

 $egin{aligned} ext{Gauss-Seidel} \ u^{(k+1)}(x_i,y_j) \ = \ rac{1}{4} \left(u^{(k)}(x_{i+1},y_j) + u^{(k+1)}(x_{i-1},y_j) + u^{(k)}(x_i,y_{j+1}) + u^{(k+1)}(x_i,y_{j-1})
ight) \end{aligned}$

Successive Over Relaxation

4/2/19

$$egin{aligned} &u^{(k+1)}(x_i,y_j) \,=\, u^{(k)}(x_i,y_j) + rac{\omega}{4}(u^{(k+1)}(x_{i+1},y_j) + u^{(k+1)}(x_{i-1},y_j) + u^{(k)}(x_i,y_{j+1}) + u^{(k)}(x_i,y_{j-1}) - 4u^{(k)}(x_i,y_j)) \end{aligned}$$

38

40

Robotics

Properties of Harmonic Functions $\nabla^2 \phi = \frac{d^2 \phi}{dx_1^2} + \ldots + \frac{d^2 \phi}{dx_n^2} = 0$ Minima in Harmonic FunctionsHitting Probabilities - if we denote p(x) at state x as
the probability that starting from x, a random walk process will
reach an obstacle before it reaches a goal—p(x) is known as the
hitting probability. $\nabla^2 \phi = \frac{d^2 \phi}{dx_1^2} + \ldots + \frac{d^2 \phi}{dx_n^2} = 0$ greedy descent on the harmonic function minimizes the hitting
probability.for some i, if $\partial^2 \phi / \partial x_1^2 > 0$ (concave upward), then there must
exist another dimension, j, where
 $\partial^2 \phi / \partial x_1^2 < 0$ to satisfy Laplace's constraint.Image: the probability of the dimension of the harmonic function minimizes the hitting
probability.Image: therefore, if you're not at a goal, there is always a way
downhill......there are no local minima...

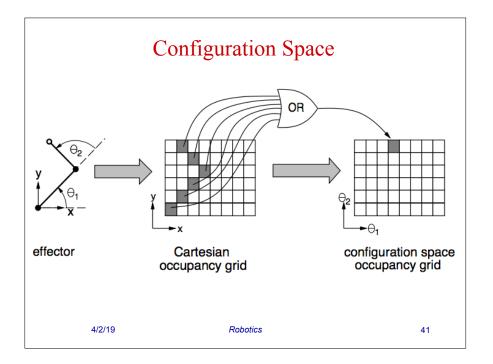
39

Robotics

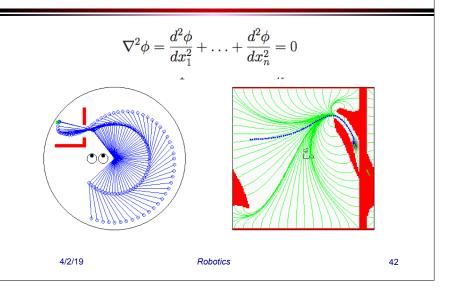
4/2/19

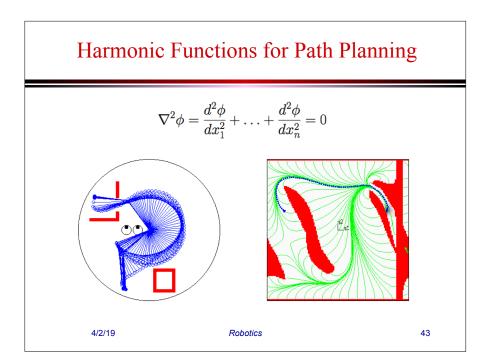
4/2/19

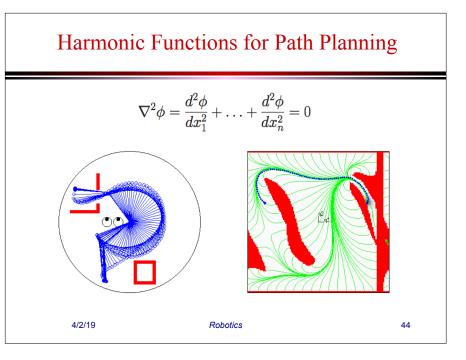
Robotics

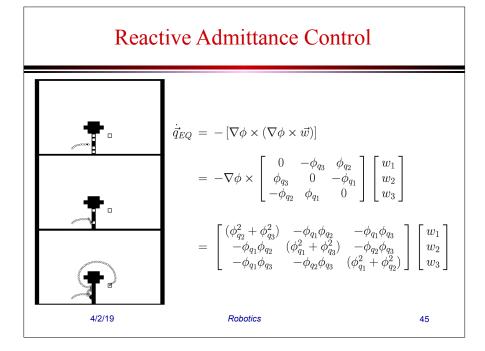


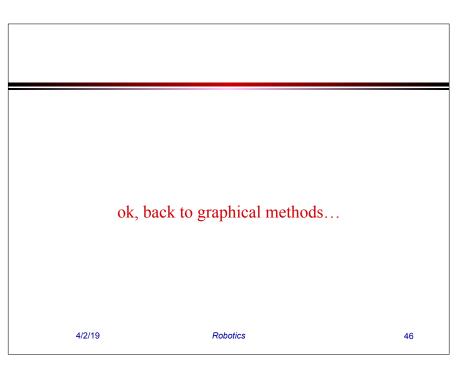
Harmonic Functions for Path Planning





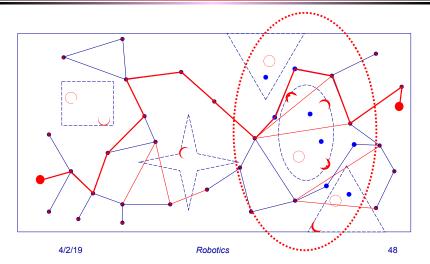


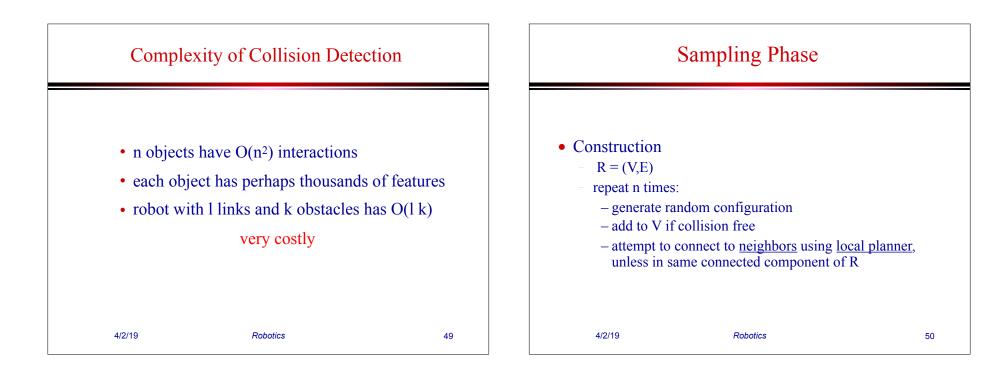


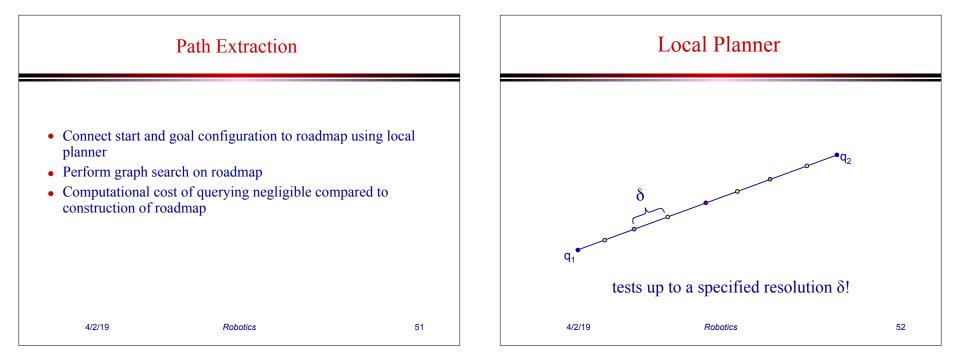


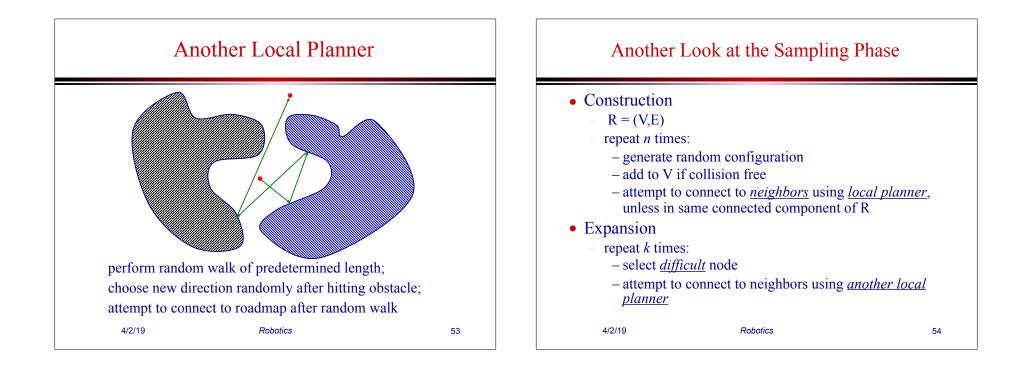
<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

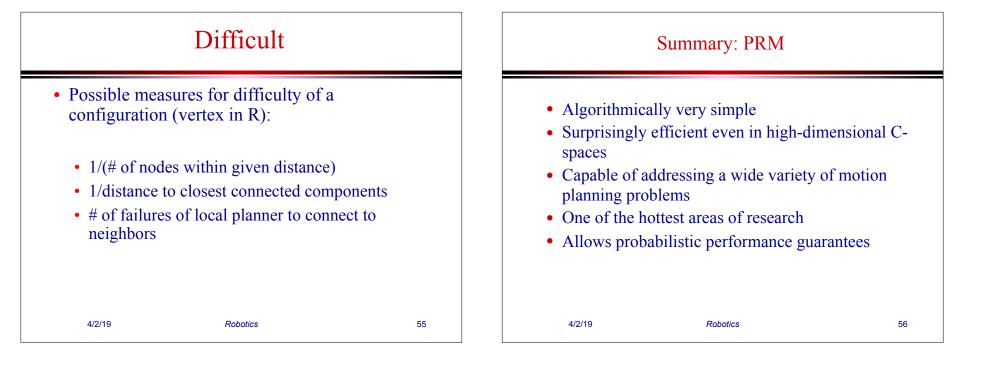
Probabilistic Roadmaps (PRM)

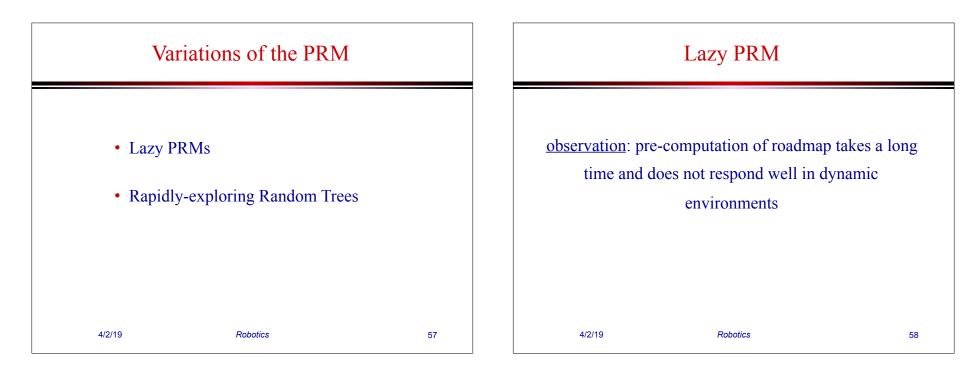


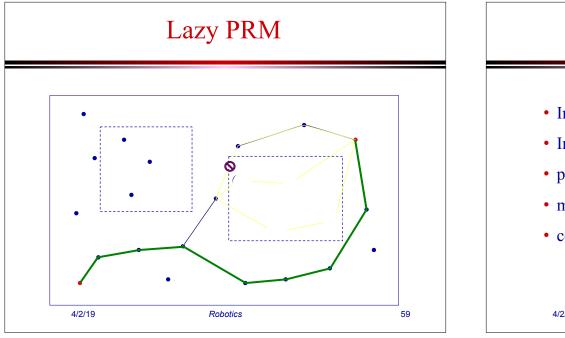


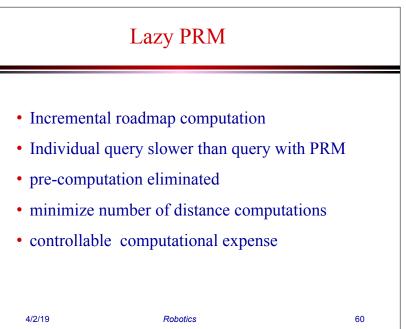


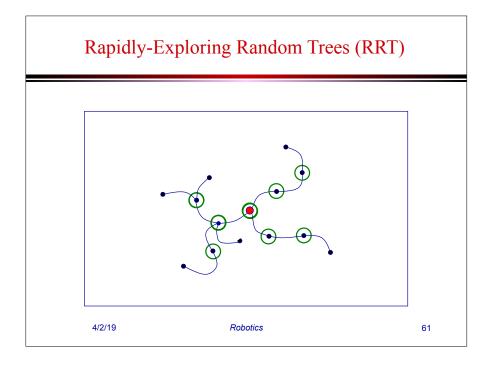


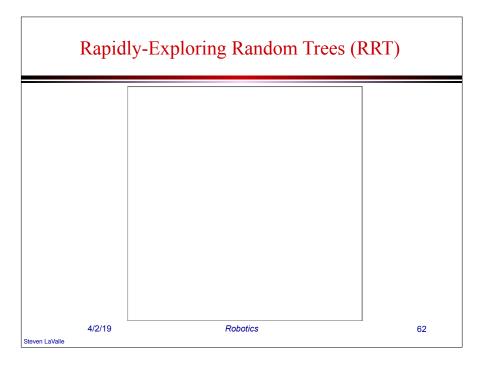












Motion Constraints

- So far:
 - Robot with 2/3 DOF
 - Translating freely
 - Rotation and translation independent
- But:
 - Oftentimes motion of robots has constraints
 - Kinematic: car
 - Dynamic: actuation limitations, traction

4/2/19

