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CS 403 - Path Planning

Roderic A. Grupen
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Why Motion Planning? 
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Why Motion Planning? 

Virtual Prototyping  
Character Animation 
Structural Molecular Biology 
Autonomous Control

GE
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Summary

• Control 
• Kinematics 
• Dynamics

… but there is more …

now you understand and 
can program any robot 
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C-Space Construction for n DOF

• 6 revolute degrees of freedom (e.g. Puma) 
• 2p range of motion per joint 
• 2 x 1015 configurations 
• 1 million checks per second 
• 69 years of computation

naïve grid method is impossible

Robotics4/2/19 !6

Origins of Motion Planning

• T. Lozano-Pérez and M.A. Wesley:  
“An Algorithm for Planning Collision-Free Paths Among 
Polyhedral Obstacles,” 1979. 

• introduced the notion of configuration space    (c-space) to 
robotics 

• many approaches have been devised since then in 
configuration space
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Completeness of Planning Algorithms

a complete planner finds a path if one exists 

resolution complete – complete to the model resolution 

probabilistically complete

Robotics

Representation

…given a moving object, A, initially in an unoccupied region of 
freespace, s, a set of stationary objects, Bi , at known locations, 

and a goal position, g, …

4/2/19 !8

find a sequence of  
collision-free motions 
 that take A from s to g 
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Computing C-Space: Growing Obstacles
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Sliding Along the Boundary

Workspace

Configuration 
Space

How about changing θ ?

!11

Translational Case (fixed orientation)

Robot

Obstacle

Reference Point
C-Space 
Obstacle
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Obstacles in 3D (x,y,q)

Jean-Claude Latombe
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Exact Cell Decomposition

Jean-Claude Latombe
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Exact Cell Decomposition
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Exact Cell Decomposition

Jean-Claude Latombe

Robotics

Representation – Simplicial Decomposition
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Schwartz and Sharir 

Lozano-Perez 

Canny
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Approximate Methods: 2n-Tree
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Approximate Cell Decomposition

Jean-Claude Latombe

again…build a graph and search it to find a path

Robotics

Representation – Roadmaps
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Visibility diagrams: 

unsmooth 

sensitive to error
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Roadmap Representations

Jean-Claude Latombe

Voronoi diagrams 

a “retraction” 

…the continuous freespace 
 is represented as 

a network of curves… 
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Summary

• Exact Cell Decomposition 
• Approximate Cell Decomposition 
• graph search  
• next: potential field methods 

• Roadmap Methods 
• visibility graphs 
• Voronoi diagrams 
• next: probabilistic road maps (PRM)
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Attractive Potential Fields

+

-
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Repulsive Potentials

+

-

-
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Electrostatic (or Gravitational) Field

depends on 
direction
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Attractive Potential

Fatt (q) = −∇φatt (q)
= −k (q−qref )

φatt (q) =
1
2
k (q−qref )

T (q−qref )
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A Repulsive Potential

Frep(q) =
1
x

Frep(q) =
1
x
−
1
δ0
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Repulsive Potential
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Sum Attractive and Repulsive Fields
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Artificial Potential Function

+ =

Ftotal (q) = −∇φtotal

φatt (q) + φrep(q) = φtotal (q)
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Potential Fields

• Goal: avoid local minima 
• Problem: requires global information 
• Solution: Navigation Function

Robot

Obstacle

Goal

Fatt

Frep

Fatt

Frep

Robotics

Navigation Functions

Analyticity – navigation functions are analytic because they are 
infinitely differentiable and their Taylor series converge to φ(q0) 
as q approaches q0 

Polar – gradients (streamlines) of navigation functions terminate 
at a unique minima
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Navigation Functions

4/2/19 !32

Morse - Critical points are places where the gradient of φ vanishes, 
i.e. minima, saddle points, or maxima are called critical values. 
Navigation functions have no degenerate critical points where the 
robot can get stuck short of attaining the goal.

Admissibility - practical potential fields must always generate 
bounded torques  
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The Hessian 

multivariable control function, f(q0,q1,...,qn) 
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if the Hessian is positive semi-definite over 
 the domain Q, then  the function f is convex over Q

Robotics

Harmonic Functions
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if the trace of the Hessian (the Laplacian) is 0

then function f is a harmonic function 

laminar fluid flow, steady state temperature distribution, 
electromagnetic fields, current flow in conductive media 

Robotics

Properties of Harmonic Functions
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Min-Max Property - 
...in any compact neighborhood of freespace, the 
minimum and maximum of the function must occur on 
the boundary.  

Robotics

Properties of Harmonic Functions
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Mean-Value - up to truncation error, the value of the 
harmonic potential at a point in a lattice is the average of the 
values of its 2n Manhattan neighbors.  

¼ ¼
¼

¼
analog & numerical methods
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Numerical Relaxation

4/2/19 !37

Jacobi iteration
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Harmonic Relaxation: Numerical Methods

Gauss-Seidel

Successive Over Relaxation

Robotics

Properties of Harmonic Functions
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Hitting Probabilities - if we denote p(x) at state x as 
the probability that starting from x, a random walk process will 
reach an obstacle before it reaches a goal—p(x) is known as the 
hitting probability  

greedy descent on the harmonic function minimizes the hitting 
probability.  

Robotics

Minima in Harmonic Functions
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for some i, if ∂2φ/∂xi
2 > 0 (concave upward), then there must 

exist another dimension, j, where  
∂2φ/∂xj

2 < 0 to satisfy Laplace’s constraint. 

therefore, if you’re not at a goal, there is always a way 
downhill... ...there are no local minima... 
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Configuration Space
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Harmonic Functions for Path Planning
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Robotics

Harmonic Functions for Path Planning
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Harmonic Functions for Path Planning
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Reactive Admittance Control
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ok, back to graphical methods…
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Probabilistic Roadmaps (PRM)

• Construction 
• Generate random configurations 
• Eliminate if they are in collision 
• Use local planner to connect configurations 

• Expansion 
• Identify connected components 
• Resample gaps 
• Try to connect components 

• Query 
• Connect initial and final configuration to roadmap 
• Perform graph search
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Probabilistic Roadmaps (PRM)
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Complexity of Collision Detection

• n objects have O(n2) interactions 

• each object has perhaps thousands of features 

• robot with l links and k obstacles has O(l k)  

very costly 
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Sampling Phase

• Construction 
–  R = (V,E) 
– repeat n times: 

– generate random configuration 
– add to V if collision free 
– attempt to connect to neighbors using local planner, 

unless in same connected component of R
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Path Extraction

• Connect start and goal configuration to roadmap using local 
planner 

• Perform graph search on roadmap 
• Computational cost of querying negligible compared to 

construction of roadmap
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Local Planner

q1

q2

tests up to a specified resolution δ!

δ
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Another Local Planner

perform random walk of predetermined length; 
choose new direction randomly after hitting obstacle; 
attempt to connect to roadmap after random walk
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Another Look at the Sampling Phase

• Construction 
–  R = (V,E) 
– repeat n times: 

– generate random configuration 
– add to V if collision free 
– attempt to connect to neighbors using local planner, 

unless in same connected component of R 
• Expansion 

– repeat k times:  
– select difficult node  
– attempt to connect to neighbors using another local 

planner
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Difficult

• Possible measures for difficulty of a 
configuration (vertex in R): 

• 1/(# of nodes within given distance) 
• 1/distance to closest connected components 
• # of failures of local planner to connect to 

neighbors
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Summary: PRM

• Algorithmically very simple 
• Surprisingly efficient even in high-dimensional C-

spaces 
• Capable of addressing a wide variety of motion 

planning problems 
• One of the hottest areas of research 
• Allows probabilistic performance guarantees
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Variations of the PRM

• Lazy PRMs 

• Rapidly-exploring Random Trees
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Lazy PRM

observation: pre-computation of roadmap takes a long 
time and does not respond well in dynamic 

environments
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Lazy PRM
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Lazy PRM

• Incremental roadmap computation 

• Individual query slower than query with PRM 

• pre-computation eliminated 

• minimize number of distance computations 

• controllable  computational expense
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Rapidly-Exploring Random Trees (RRT)
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Rapidly-Exploring Random Trees (RRT)

Steven LaValle

Robotics4/2/19 !63

Motion Constraints

• So far: 
• Robot with 2/3 DOF 
• Translating freely 
• Rotation and translation independent 

• But: 
• Oftentimes motion of robots has constraints 
• Kinematic: car 
• Dynamic: actuation limitations, traction
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Nonholonomic Motion: Car-like Robot

Jean-Claude Latombe


