CMPSCI 403 MIDTERM I Review

focus on quizes (nomenclature) and written homeworks (technical)

Actuators: Chapter 2

1. muscle - actin/myosin interaction (Huxley model)
2. DC motors - Lorentz force, Faraday's law (back emf), DC motor curves
3. gearheads

Exercises:

- muscle capacity
- DC motor torque/speed - curves (2 questions)
- gearhead

Control Theory : Chapter 3 and Appendix

1. spinal processing, $\alpha-\gamma$ motor neurons, motor units, the stretch reflex, negative feedback
2. Spring-Mass-Damper, harmonic oscillators
3. Stability - energy-based method
(a) Lyapunov's Direct Method

$$
V(0, t)=0, V(x, t)>0, \partial V / \partial t \leq 0
$$

(b) stable and asymptotically stable
4. Frequency domain analysis - Laplace transform, characteristic equation, solving for time-domain response,
5. Stability - complex frequency domain
(a) root locus,
(b) stable and asymptotically stable
6. PD control - $2^{\text {nd }}$ order dynamic response, roots of the characteristic equations, over-, under-, and critically-damped response, phase/amplitude response, bandwidth

Exercises:

- SMD - characteristic equation, natural frequency, damping ratio, boundary conditions \& time domain response
- tuning K, B for natural frequency
- analyzing the characteristic equation - natural frequency, damping ratio, bandwidth
- CLTF - stability
- stability - time- and complex frequency domain analysis
- (non-linear) pendulum - Lyapunov, phase portrait

Kinematics : Chapter 4 and Appendix

1. Terminology - links, joints,kinematic chain, mechanism, closed- and open-chain, degrees of freedom, configuration space, revolute, prismatic
2. spatial tasks, coordinate frames, holonomic and nonholonomic
3. homogeneous transforms (deriving, interpreting, composing, inverting)
4. forward kinematics $\boldsymbol{\theta} \stackrel{F K}{\mapsto} \boldsymbol{x}$,
5. inverse kinematics $\boldsymbol{x} \stackrel{I K}{\mapsto}$, workspace constraints, dextrous workspace, reachability
6. imaging kinematics - pinhole camera model, perspective distortion,
7. stereo kinematics - disparity, spatial reconstruction
8. hand-eye coordination
9. Jacobian (velocity and force relations),
10. kinematic conditioning - manipulator velocity ellipsoid, stereo localizability ellipsoid

Exercises:

- inverting homogeneous transforms
- structure in the HT
- spatial algebra and the HT (2 problems)
- planar 2P Mechanism - FK, workspace (reachable, dexterous), Jacobian
- planar 2R Mechanism - FK (HT), Jacobian, $\dot{\boldsymbol{\theta}}=J^{-1} \dot{\boldsymbol{x}}, \boldsymbol{\tau}=\boldsymbol{J}^{T} \boldsymbol{f}$, velocity ellipsoid
- pinhole camera projective geometry

