Dynamics

The branch of physics that treats the action of force on bodies in motion or at rest; kinetics, kinematics, and statics, collectively. — Websters dictionary

Outline

• Conservation of Momentum
• Inertia Tensors - translation and rotation
• Dynamics
 – Newton/Euler Dynamics
 – State Space Form - computed torque equation
• Applications:
 – simulation;
 – control - feedforward compensation;
 – analysis - the acceleration ellipsoid.
Newton’s Laws

1. a particle will remain in a state of constant rectilinear motion unless acted on by an external force;

2. the time-rate-of-change in the momentum \((m \dot{v})\) of the particle is proportional to the externally applied forces, \(F = \frac{d}{dt}(m \dot{v})\); and

3. any force imposed on body \(A\) by body \(B\) is reciprocated by an equal and opposite reaction force on body \(B\) by body \(A\).

Conservation of Momentum

Linear:
\[
F = \frac{d}{dt} [m \dot{x}] = m \ddot{x}
\]
\[
[N] = \left[\frac{kg \ m}{sec^2} \right]
\]

Angular:
\[
\tau = \frac{d}{dt} \left[J \dot{\theta} \right] = J \ddot{\theta}
\]
\[
[Nm] = \left[\frac{kg \ m^2}{sec^2} \right]
\]

\(J\) is called the mass moment of inertia
Conservation of Momentum

To generate an angular acceleration about frame O, a torque is applied around the \hat{z} axis

\[\boldsymbol{\tau}_k = \boldsymbol{r} \times \boldsymbol{f} = r_k \hat{r} \times \frac{d}{dt} (m_k \boldsymbol{v}_k) \]

\[= m_k r_k \left[\hat{r} \times \frac{d}{dt} (\boldsymbol{v}_k) \right] \]

the velocity of m_k due to ω_O is

\[\boldsymbol{v}_k = (\omega \hat{z} \times r_k \hat{r}) = (r_k \omega) \hat{t}, \]

so that

\[\boldsymbol{\tau}_k = (m_k r_k^2) \dot{\omega} \hat{z} = J_k \dot{\omega} \hat{z} \]

where, J_k is the mass moment of inertia of particle m_k around the \hat{z} axis located at frame O

\[\boldsymbol{\tau} = \left(\sum_k m_k r_k^2 \right) \dot{\omega} = J \dot{\omega}. \]
Conservation of Momentum

\[J \text{ [kg} \cdot \text{m}^2\text{]} \] is the scalar moment of inertia

In the rotating lamina, the counterpart of linear momentum \((p = mv)\) is angular momentum \(L = J\omega\),

so that Euler’s equation can be written in the same form as Newton’s second law

\[\tau = \frac{d}{dt}[J\omega] = J\ddot{\theta} \]

...rotating bodies conserve angular momentum (and remain in a constant state of angular velocity) unless acted upon by an external torque...

Copyright ©2020 Roderic Grupen
Inertia Tensor

\[I = \begin{bmatrix}
 I_{xx} & -I_{xy} & -I_{xz} \\
 -I_{yx} & I_{yy} & -I_{yz} \\
 -I_{zx} & -I_{zy} & I_{zz}
\end{bmatrix} \]

Mass Moments of Inertia

- \(I_{xx} = \int \int \int (y^2 + z^2) \rho \, dv \)
- \(I_{yy} = \int \int \int (x^2 + z^2) \rho \, dv \)
- \(I_{zz} = \int \int \int (x^2 + y^2) \rho \, dv \)

Mass Products of Inertia

- \(I_{xy} = \int \int \int xy \rho \, dv \)
- \(I_{xz} = \int \int \int xz \rho \, dv \)
- \(I_{yz} = \int \int \int yz \rho \, dv \)
EXAMPLE: Inertia Tensor of an Eccentric Rectangular Prism

\[I_{xx} = \int_0^h \int_0^l \int_0^w (y^2 + z^2) \rho dxdydz \]
\[= \int_0^h \int_0^l (y^2 + z^2) w \rho dydz \]
\[= \int_0^h \left[\left(\frac{y^3}{3} + z^2 y \right) \right]_0^l w \rho dz \]
\[= \int_0^h \left(\frac{l^3}{3} + z^2 l \right) w \rho dz \]
\[= \left. \left(\frac{l^3 z}{3} + \frac{l z^3}{3} \right) \right|_0^h (w \rho) \]
\[= \left(\frac{l^3 h}{3} + \frac{l h^3}{3} \right) w \rho \]

or, since the mass of the rectangle \(m = (wlh) \rho \),

\[I_{xx} = \frac{m}{3} (l^2 + h^2). \]
EXAMPLE: Inertia Tensor of an Eccentric Rectangular Prism

...completing the other moments and products of inertia yields:

\[A I = \begin{bmatrix} \frac{m}{3}(l^2 + h^2) & \frac{m}{4}wl & \frac{m}{4}hw \\ \frac{m}{4}wl & \frac{m}{3}(w^2 + h^2) & \frac{m}{4}hl \\ \frac{m}{4}hw & \frac{m}{4}hl & \frac{m}{3}(l^2 + w^2) \end{bmatrix} \]
Parallel Axis Theorem -
Translating the Inertia Tensor

the moments of inertia look like:

\[A I_{zz} = CM I_{zz} + m(r_x^2 + r_y^2), \]

and the products of inertia are:

\[A I_{xy} = CM I_{xy} + m(r_x r_y). \]
EXAMPLE: The Symmetric Rectangular Prism

\[CM I_{zz} = A I_{zz} - m(r_x^2 + r_y^2) \]
\[= \frac{m}{3}(l^2 + w^2) - \frac{m}{4}(l^2 + w^2) \]
\[= \frac{m}{12}(l^2 + w^2) \]

\[CM I_{xy} = A I_{xy} - m(r_x r_y) \]
\[= \frac{m}{4}(wl) - \frac{m}{4}(wl) = 0. \]

Moving the axes of rotation to the center of mass results in a diagonalized inertia tensor

\[
CM I = \frac{m}{12} \begin{bmatrix}
(l^2 + h^2) & 0 & 0 \\
0 & (w^2 + h^2) & 0 \\
0 & 0 & (l^2 + w^2)
\end{bmatrix}
\]

diagonal terms are smaller and the off-diagonals are 0
Rotating the Inertia Tensor

angular momentum \(\mathbf{L}_0 = \mathbf{I}_0\mathbf{\omega} \) about frame 0 in a vector quantity that is conserved.

we can express it relative to frame 1 as

\[
\mathbf{L}_1 = {}_1\mathbf{R}_0\mathbf{L}_0
\]

or

\[
\mathbf{I}_1\mathbf{\omega}_1 = {}_1\mathbf{R}_0(\mathbf{I}_0\mathbf{\omega}_0)
\]

\[
= {}_1\mathbf{R}_0\mathbf{I}_0[{}_1\mathbf{R}_0^T {}_1\mathbf{R}_0]\mathbf{\omega}_0 = {}_1\mathbf{R}_0\mathbf{I}_0 {}_1\mathbf{R}_0^T \mathbf{\omega}_1
\]

and therefore,

\[
\mathbf{I}_1 = {}_1\mathbf{R}_0 \mathbf{I}_0 {}_1\mathbf{R}_0^T.
\]
Rotating Coordinate Systems

Definition (Inertial Frame)
the frame where the absolute state of motion is completely known

Let frame \(A \) be an inertial frame. Frame \(B \) has an absolute velocity, \(\omega_B \) (written in terms of frame \(B \) coordinates).

\[
\begin{align*}
\mathbf{r}_A(t) &= A R_B(t) \mathbf{r}_B(t) \\
\dot{\mathbf{r}}_A(t) &= A R_B(t) \frac{d}{dt} [\mathbf{r}_B(t)] + \frac{d}{dt} [A R_B(t)] \mathbf{r}_B(t)
\end{align*}
\]

To evaluate the second term on the right, consider how the \(\hat{x}, \hat{y}, \) and \(\hat{z} \), basis vectors for frame \(B \) change by virtue of \(\omega_B \).

\[
\begin{align*}
\dot{\hat{x}} &= +\omega_z \hat{y} - \omega_y \hat{z} \\
\dot{\hat{y}} &= -\omega_z \hat{x} + \omega_x \hat{z} \\
\dot{\hat{z}} &= +\omega_y \hat{x} - \omega_x \hat{y}
\end{align*}
\]

So

\[
\frac{d}{dt} [A R_B(t)] \mathbf{r}_B(t) = \begin{bmatrix} 0 & \omega_z & -\omega_y \\ -\omega_z & 0 & \omega_x \\ \omega_y & -\omega_x & 0 \end{bmatrix} \begin{bmatrix} r_x \\ r_y \\ r_z \end{bmatrix} = \omega \times \mathbf{r}
\]
Rotating Coordinate Systems

Therefore,

\[\dot{r}_A(t) = A R_B(t) \frac{d}{dt}[r_B(t)] + \frac{d}{dt}[A R_B(t)] r_B(t) \]
\[= A R_B [\dot{r}_B + (\omega_B \times r_B)] \]

and, in fact, all vector quantities expressed in local frames that are moving relative to an inertial frame are differentiated in this way

\[\frac{d}{dt}[A R_B(t)(\cdot)_B] = A R_B \left[\frac{d}{dt}(\cdot)_B + (\omega_B \times (\cdot)_B) \right] \]

gives rise to the notorious Coriolis and centripetal forces!
large scale atmospheric flows converge at low pressure regions. A nonrotating planet, this would result in flow lines directed radially inward. but the earth rotates...

consider a stationary inertial frame A and a rotating frame B attached to the earth

\[
\mathbf{v}_A = A R_B(t) \mathbf{v}_B
\]

\[
\dot{\mathbf{v}}_A = A R_B [\dot{\mathbf{v}}_B + (\omega \times \mathbf{v}_B)]
\]

so that to an observer that travels with frame B:

\[
\dot{\mathbf{v}}_B = B R_A [\dot{\mathbf{v}}_A] - (\omega \times \mathbf{v}_B)
\]

a convergent flow and a rotating system, therefore, leads to a counterclockwise flow in the northern hemisphere and a clockwise rotation in the southern hemisphere.
Newton/Euler Method

The recursive equations for these iterations are derived in Appendix B of the book.
Recursive Newton-Euler Equations

Outward Iterations

Angular Velocity: \(\omega \)
- REVOLUTE: \(^{i+1} \omega_{i+1} = ^{i+1} R_i \dot{\omega}_i + \dot{\theta}_{i+1} \hat{z}_{i+1} \)
- PRISMATIC: \(^{i+1} \omega_{i+1} = ^{i+1} R_i \dot{\omega}_i \)

Angular Acceleration: \(\dot{\omega} \)
- REVOLUTE: \(^{i+1} \dot{\omega}_{i+1} = ^{i+1} R_i \dot{\omega}_i + (^{i+1} R_i \omega_i \times \dot{\theta}_{i+1} \hat{z}_{i+1}) + \ddot{\theta}_{i+1} \hat{z}_{i+1} \)
- PRISMATIC: \(^{i+1} \dot{\omega}_{i+1} = ^{i+1} R_i \dot{\omega}_i \)

Linear Acceleration: \(\dot{v} \)
- REVOLUTE: \(^{i+1} \dot{v}_{i+1} = ^{i+1} R_i \left[^i \dot{v}_i + (^i \omega_i \times ^i p_{i+1}) + (^i \omega_i \times (^i \hat{p}_{i+1} \times ^i \dot{\omega}_i)) \right] \)
- PRISMATIC: \(^{i+1} \dot{v}_{i+1} = ^{i+1} R_i \left[^i \dot{v}_i + \dot{\hat{d}}_i \hat{x}_i + 2(^i \omega_i \times \dot{d}_i \hat{x}_i) + (^i \dot{\omega}_i \times (^i \hat{d}_i \hat{x}_i)) + (^i \omega_i \times ^i \omega_i \times ^i \hat{d}_i \hat{x}_i) \right] \)

Linear Acceleration (center of mass): \(\dot{v}_{cm} \)
- \(^{i+1} \dot{v}_{cm,(i+1)} = (^{i+1} \dot{\omega}_{i+1} \times ^{i+1} p_{cm}) + (^{i+1} \omega_{i+1} \times ^{i+1} \dot{p}_{cm}) + ^{i+1} \dot{v}_{i+1} \)

Net Force: \(F \)
- \(^{i+1} F_{i+1} = m_{i+1} ^{i+1} \dot{v}_{cm} \)

Net Moment: \(N \)
- \(^{i+1} N_{i+1} = I_{i+1} ^{i+1} \dot{\omega}_{i+1} + (^{i+1} \omega_{i+1} \times I_{i+1} ^{i+1} \omega_{i+1}) \)

Inward Iterations

Inter-Link Forces:
- \(^i f_i = ^i F_i + ^i R_{i+1} ^{i+1} f_{i+1} \)

Inter-Link Moments:
- \(^i \eta_i = ^i N_i + ^i R_{i+1} ^{i+1} \eta_{i+1} + (^i p_{cm} \times ^i F_i) + (^i p_{i+1} \times ^i R_{i+1} ^{i+1} f_{i+1}) \)
The Computed Torque Equation

State Space Form

\[\tau = M(\theta)\ddot{\theta} + V(\theta \dot{\theta}) + G(\theta) + F \]

external forces/torques:

- external forces
- friction
 - viscous \(\tau = -v\dot{\theta} \)
 - coulomb \(\tau = -c(\text{sgn}(\dot{\theta})) \)
 - hybrid
EXAMPLE: Dynamic Model of Roger’s Eye

\[\sum \tau = \frac{d}{dt} (J \dot{\theta}) \]

\[\tau_m + mgl\sin(\theta) = (ml^2) \ddot{\theta} \]

or

\[\tau_m = M\ddot{\theta} + G, \]

generalized inertia

\[M = ml^2 \text{ (a scalar)}; \]

Coriolis and centripetal forces

\[\mathbf{V}(\theta, \dot{\theta}) \text{ do not exist; and} \]

Gravitational loads

\[G = -mgl\sin(\theta) \]
EXAMPLE: Dynamic Model of Roger’s Arm

\[M(\theta) = \begin{bmatrix}
 m_2 l_2^2 + 2m_2 l_1 l_2 c_2 + (m_1 + m_2) l_1^2 & m_2 l_2^2 + m_2 l_1 l_2 c_2 \\
 m_2 l_2^2 + m_2 l_1 l_2 c_2 & m_2 l_2^2
\end{bmatrix} \]

\[V(\theta, \dot{\theta}) = \begin{bmatrix}
 -m_2 l_1 l_2 s_2 (\dot{\theta}_2^2 + 2\dot{\theta}_1 \dot{\theta}_2) \\
 m_2 l_1 l_2 s_2 \dot{\theta}_1^2
\end{bmatrix} \quad Nm \]

\[G(\theta) = \begin{bmatrix}
 -(m_1 + m_2) l_1 s_1 g - m_2 l_2 s_{12} g \\
 -m_2 l_2 s_{12} g
\end{bmatrix} \quad Nm \]
EXAMPLE: Roger’s Whole-Body Dynamics

Roger’s whole-body dynamics can also be written in the standardized form of the computed torque equation.

$$\tilde{\tau} = M \ddot{q} + V(q, \dot{q}) + F$$

where $\tilde{\tau} \in \mathbb{R}^8$ is the vector of forces and torques causing acceleration in the degrees of freedom $q \in \mathbb{R}^8$ of the robot.
Simulation

\[\ddot{\theta} = M^{-1}(\theta) \left[\tau - V(\theta \dot{\theta}) - G(\theta) - F \right] \]

initial conditions:

\[\theta(0) = \theta_0 \quad \dot{\theta}(0) = \ddot{\theta}(0) = 0 \]

numerical integration:

\[\ddot{\theta}(t) = M^{-1}[\tau - V - G - F] \]

\[\dot{\theta}(t + \Delta t) = \dot{\theta}(t) + \ddot{\theta}(t)\Delta t \]

\[\theta(t + \Delta t) = \theta(t) + \dot{\theta}(t)\Delta t + \frac{1}{2} \ddot{\theta}(t)\Delta t^2 \]
Feedforward Dynamic Compensators

linearized and decoupled
Generalized Inertia Ellipsoid

computed torque equation:

$$\tau = M\ddot{\theta} + V(\theta, \dot{\theta}) + G(\theta)$$

if we assume that $\dot{\theta} \approx 0$, and we ignore gravity

$$\tau = M\ddot{\theta}$$

$$\|\ddot{\theta}\| \leq 1$$

relative inertia—torque required to create a unit acceleration defined by the eigenvalues and eigenvectors of MM^T
Acceleration Polytope

Gravity, actuator performance, and the current state of motion influences the ability of a manipulator to generate accelerations differentiating $\ddot{r} = J\dot{q},$

\[
\ddot{r} = J(q)\ddot{q} + \dot{J}(q, \dot{q})\dot{q}
\]

\[
= J\left[M^{-1}(\tau - V - G) \right] + \dot{J}\dot{q}
\]

\[
= JM^{-1}\tau + \dot{v}_{vel} + \dot{v}_{grav},
\]

\[
\dot{v}_{vel} = -JM^{-1}V + \dot{J}\dot{q}, \quad \text{and}
\]

\[
\dot{v}_{grav} = -JM^{-1}G.
\]

$\tilde{\tau} = L^{-1}\tau \quad L = \text{diag}(\tau_{1}^{\text{limit}}, \ldots, \tau_{n}^{\text{limit}})$

Admissible torques constitute a unit hypercube $\|\tilde{\tau}\|_{\infty} \leq 1$

\[
\ddot{r} = JM^{-1}L\tilde{\tau} + \dot{v}_{vel} + \dot{v}_{grav}
\]

\[
= JM^{-1}L\tilde{\tau} + \dot{v}_{bias}.
\]

Maps the n-dimensional hypercube $\|\tilde{\tau}\|_{\infty} \leq 1$ to the m-dimensional acceleration polytope.
\[\tilde{\tau}^T \tilde{\tau} = (\ddot{r} - \dot{v}_{bias})^T \left([JM^{-1}L]^{-1} \right)^T \left([JM^{-1}L]^{-1} \right) (\ddot{r} - \dot{v}_{bias}) \leq 1 \]

\(M \) and \(L \) are symmetric:

\[A^{-T} = (A^{-1})^T, \quad A^{-2} = A^{-1}A^{-1}, \text{ and for symmetric matrices,} \quad A^T = A. \]

\[(\ddot{r} - \dot{v}_{bias})^T \left[J^{-T}ML^{-2}MJ^{-1} \right] (\ddot{r} - \dot{v}_{bias}) \leq 1, \]

so that

dynamic manipulability ellipsoid

\[(\ddot{r} - \dot{v}_{bias})(\ddot{r} - \dot{v}_{bias})^T \in [JM^{-T}L^2M^{-1}J^T] \]

dynamic-manipulability measure

\[\kappa_d(q, \dot{q}) = \sqrt{\det [J(M^TM)^{-1}J^T]} \]
Conditioning Acceleration

\[m_1 = m_2 = 0.2 \text{ kg}, \quad l_1 = l_2 = 0.25 \text{ m}, \quad \tau^T \tau \leq 0.005 \text{ N}^2\text{m}^2. \]

black ellipsoids - unbiased dynamic manipulability
gravity biased dynamic manipulability
normalized acceleration polytope with gravity bias